8 resultados para Faraday, Efeito de
em Indian Institute of Science - Bangalore - Índia
Resumo:
A set of coils has been designed and constructed for generating magnetic field gradients for a Faraday magnetometer. We have obtained a gradient of magnitude -1 1 kOe m-' (8.75 x lo5 A m-') in an air gap of 42 mm for a current of 12 A passing through the coils.
Resumo:
The low frequency surface magnetoplasmon-type polaritons in the Faraday configuration will propagate as generalized surface modes if 4ε∞/(ε∞ − 1)2 greater-or-equal, slanted μ2 and as pure surface modes if this inequality is reversed. The possibility of using the low frequency surface waves as a suitable probe for measuring the carrier concentration of a given sample is discussed.
Resumo:
The analysis of the dispersion equation for surface magnetoplasmons in the Faraday configuration for the degenerate case of decaying constants being equal is given from the point of view of understanding the non-existence of the “degenerate modes”. This analysis also shows that there exist well defined “degenerate points” on the dispersion curve with electromagnetic fields varying linearly over small distances taken away from the interface.
Resumo:
Faraday-type electromagnetic flow meters are employed for measuring the flow rate of liquid sodium in fast breeder reactors. The calibration of such flow meters, owing to the required elaborative arrangements is rather difficult. On the other hand, theoretical approach requires solution of two coupled electromagnetic partial differential equation with profile of the flow and applied magnetic field as the inputs. This is also quite involved due to the 3D nature of the problem. Alternatively, Galerkin finite element method based numerical solution is suggested in the literature as an attractive option for the required calibration. Based on the same, a computer code in Matlab platform has been developed in this work with both 20 and 27 node brick elements. The boundary conditions are correctly defined and several intermediate validation exercises are carried out. Finally it is shown that the sensitivities predicted by the code for flow meters of four different dimensions agrees well with the results given by analytical expression, thereby providing strong validation. Sensitivity for higher flow rates, for which analytical approach does not exist, is shown to decrease with increase in flow velocity.