15 resultados para Family-to-business mechanisms

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we exploit the idea of decomposition to match buyers and sellers in an electronic exchange for trading large volumes of homogeneous goods, where the buyers and sellers specify marginal-decreasing piecewise constant price curves to capture volume discounts. Such exchanges are relevant for automated trading in many e-business applications. The problem of determining winners and Vickrey prices in such exchanges is known to have a worst-case complexity equal to that of as many as (1 + m + n) NP-hard problems, where m is the number of buyers and n is the number of sellers. Our method proposes the overall exchange problem to be solved as two separate and simpler problems: 1) forward auction and 2) reverse auction, which turns out to be generalized knapsack problems. In the proposed approach, we first determine the quantity of units to be traded between the sellers and the buyers using fast heuristics developed by us. Next, we solve a forward auction and a reverse auction using fully polynomial time approximation schemes available in the literature. The proposed approach has worst-case polynomial time complexity. and our experimentation shows that the approach produces good quality solutions to the problem. Note to Practitioners- In recent times, electronic marketplaces have provided an efficient way for businesses and consumers to trade goods and services. The use of innovative mechanisms and algorithms has made it possible to improve the efficiency of electronic marketplaces by enabling optimization of revenues for the marketplace and of utilities for the buyers and sellers. In this paper, we look at single-item, multiunit electronic exchanges. These are electronic marketplaces where buyers submit bids and sellers ask for multiple units of a single item. We allow buyers and sellers to specify volume discounts using suitable functions. Such exchanges are relevant for high-volume business-to-business trading of standard products, such as silicon wafers, very large-scale integrated chips, desktops, telecommunications equipment, commoditized goods, etc. The problem of determining winners and prices in such exchanges is known to involve solving many NP-hard problems. Our paper exploits the familiar idea of decomposition, uses certain algorithms from the literature, and develops two fast heuristics to solve the problem in a near optimal way in worst-case polynomial time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

P>1Organisms with low mobility, living within ephemeral environments,need to find vehicles that can disperse them reliably to new environments. The requirement for specificity in this passenger-vehicle relationship is enhanced within a tritrophic interaction when the environment of passenger and vehicle is provided by a third organism. Such relationships pose many interesting questions about specificity within a tritrophic framework. 2. Central to understanding how these tritrophic systems have evolved, is knowing how they function now. Determining the proximal cues and sensory modalities used by passengers to find vehicles and to discriminate between reliable and non-reliable vehicles is, therefore, essential to this investigation. 3. The ancient, co-evolved and highly species-specific nursery pollination mutualism between figs and fig wasps is host to species-specific plant-parasitic nematodes which use fig wasps to travel between figs. Since individual globular fig inflorescences, i.e. syconia, serve as incubators for hundreds of developing pollinating and parasitic wasps, a dispersal-stage nematode within such a chemically,complex and physically crowded environment is faced with the dilemma of choosing the right vehicle for dispersal into a new fig. Such a system therefore affords excellent opportunities to investigate mechanisms that contribute to the evolution of specificity between the passenger and the vehicle. 4. In this study of fig-wasp-nematode tritrophic interactions in Ficus racemosa within which seven wasp species can breed, we demonstrate using two-choice as well as cafeteria assays that plant-parasitic nematodes (Schistonchus racemosa) do not hitch rides randomly on available eclosing wasps within the fig syconium, but are specifically attracted, at close range, i.e. 3 mm distance, to only that vehicle which can quickly, within a few hours, reliably transfer it to another fig. This vehicle is the female pollinating wasp. Male wasps and female parasitic wasps are inappropriate vehicles since the former are wingless and die within the fig, while the latter never enter another fig. Nematodes distinguished between female pollinating wasps and other female parasitic wasps using volatiles and cuticular hydrocarbons. Nematodes could not distinguish between cuticular hydrocarbons of male and female pollinators but used other cues, such as volatiles, at close range, to find female pollinating wasps with which they have probably had a long history of chemical adaptation. 5. This study opens up new questions and hypotheses about the evolution and maintenance of specificity in fig-wasp-nematode tritrophic interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Waardenburg syndrome (WS) is characterized by sensorineural hearing loss and pigmentation defects of the eye, skin, and hair. It is caused by mutations in one of the following genes: PAX3 (paired box 3), MITF (microphthalmia-associated transcription factor), EDNRB (endothelin receptor type B), EDN3 (endothelin 3), SNAI2 (snail homolog 2, Drosophila) and SOX10 (SRY-box containing gene 10). Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder caused by mutations in the DMD gene. The purpose of this study was to identify the genetic causes of WS and DMD in an Indian family with two patients: one affected with WS and DMD, and another one affected with only WS. Methods: Blood samples were collected from individuals for genomic DNA isolation. To determine the linkage of this family to the eight known WS loci, microsatellite markers were selected from the candidate regions and used to genotype the family. Exon-specific intronic primers for EDN3 were used to amplify and sequence DNA samples from affected individuals to detect mutations. A mutation in DMD was identified by multiplex PCR and multiplex ligation-dependent probe amplification method using exon-specific probes. Results: Pedigree analysis suggested segregation of WS as an autosomal recessive trait in the family. Haplotype analysis suggested linkage of the family to the WS4B (EDN3) locus. DNA sequencing identified a novel missense mutation p.T98M in EDN3. A deletion mutation was identified in DMD. Conclusions: This study reports a novel missense mutation in EDN3 and a deletion mutation in DMD in the same Indian family. The present study will be helpful in genetic diagnosis of this family and increases the mutation spectrum of EDN3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An exciting application of crowdsourcing is to use social networks in complex task execution. In this paper, we address the problem of a planner who needs to incentivize agents within a network in order to seek their help in executing an atomic task as well as in recruiting other agents to execute the task. We study this mechanism design problem under two natural resource optimization settings: (1) cost critical tasks, where the planner's goal is to minimize the total cost, and (2) time critical tasks, where the goal is to minimize the total time elapsed before the task is executed. We identify a set of desirable properties that should ideally be satisfied by a crowdsourcing mechanism. In particular, sybil-proofness and collapse-proofness are two complementary properties in our desiderata. We prove that no mechanism can satisfy all the desirable properties simultaneously. This leads us naturally to explore approximate versions of the critical properties. We focus our attention on approximate sybil-proofness and our exploration leads to a parametrized family of payment mechanisms which satisfy collapse-proofness. We characterize the approximate versions of the desirable properties in cost critical and time critical domain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Coats plus syndrome is an autosomal recessive, pleiotropic, multisystem disorder characterized by retinal telangiectasia and exudates, intracranial calcification with leukoencephalopathy and brain cysts, osteopenia with predisposition to fractures, bone marrow suppression, gastrointestinal bleeding and portal hypertension. It is caused by compound heterozygous mutations in the CTC1 gene. Case presentation: We encountered a case of an eight-year old boy from an Indian family with manifestations of Coats plus syndrome along with an unusual occurrence of dextrocardia and situs inversus. Targeted resequencing of the CTC1 gene as well as whole exome sequencing (WES) were conducted in this family to identify the causal variations. The identified candidate variations were screened in ethnicity matched healthy controls. The effect of CTC1 variation on telomere length was assessed using Southern blot. A novel homozygous missense mutation c.1451A > C (p.H484P) in exon 9 of the CTC1 gene and a rare 3'UTR known dbSNP variation (c.*556 T > C) in HES7 were identified as the plausible candidates associated with this complex phenotype of Coats plus and dextrocardia. This CTC1 variation was absent in the controls and we also observed a reduced telomere length in the affected individual's DNA, suggesting its likely pathogenic nature. The reported p.H484P mutation is located in the N-terminal 700 amino acid regionthat is important for the binding of CTC1 to ssDNA through its two OB domains. WES data also showed a rare homozygous missense variation in the TEK gene in the affected individual. Both HES7 and TEK are targets of the Notch signaling pathway. Conclusions: This is the first report of a genetically confirmed case of Coats plus syndrome from India. By means of WES, the genetic variations in this family with unique and rare complex phenotype could be traced effectively. We speculate the important role of Notch signaling in this complex phenotypic presentation of Coats plus syndrome and dextrocardia. The present finding will be useful for genetic diagnosis and carrier detection in the family and for other patients with similar disease manifestations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

How do we assess the capability of a compliant mechanism of given topology and shape? The kinetoelastostatic maps proposed in this paper help answer this question. These maps are drawn in 2D using two non-dimensional quantities, one capturing the nonlinear static response and the other the geometry, material, and applied forces. Geometrically nonlinear finite element analysis is used to create the maps for compliant mechanisms consisting of slender beams. In addition to the topology and shape, the overall proportions and the proportions of the cross-sections of the beam segments are kept fixed for a map. The finite region of the map is parameterized using a non-dimensional quantity defined as the slenderness ratio. The shape and size of the map and the parameterized curves inside it indicate the complete kinetoelastostatic capability of the corresponding compliant mechanism of given topology, shape, and fixed proportions. Static responses considered in this paper include input/output displacement, geometric amplification, mechanical advantage, maximum stress, etc. The maps can be used to compare mechanisms, to choose a suitable mechanism for an application, or re-design as may be needed. The usefulness of the non-dimensional maps is presented with multiple applications of different variety. Non-dimensional portrayal of snap-through mechanisms is one such example. The effect of the shape of the cross-section of the beam segments and the role of different segments in the mechanism as well as extension to 3D compliant mechanisms, the cases of multiple inputs and outputs, and moment loads are also explained. The effects of disproportionate changes on the maps are also analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different compositions of poly(methyl methacrylate-co-methyl acrylate) (PMMAMA), poly(methyl methacrylate-co-ethyl acrylate) (PMMAEA) and poly(methyl methacrylate-co-butyl acrylate) (PMMABA) copolymers were synthesized and characterized. The photocatalytic oxidative degradation of all these copolymers were studied in presence of two different catalysts namely Degussa P-25 and combustion synthesized titania using azobis-iso-butyronitrile and benzoyl peroxide as oxidizers. Gel permeation hromatography (GPC) was used to determine the molecular weight distribution of the samples as a function of time. The GPC chromatogram indicated that the photocatalytic oxidative degradation of all these copolymers proceeds by both random and chain end scission.Continuous distribution kinetics was used to develop a model for photocatalytic oxidative degradation considering both random and specific end scission. The degradation rate coefficients were determined by fitting the experimental data with the model. The degradation rate coefficients of the copolymers decreased with increase in the percentage of alkyl acrylate in the copolymer. This indicates that the photocatalytic oxidative stability of the copolymers increased with increasing percentage of alkyl acrylate. From the degradation rate coefficients, it was observed that the photocatalytic oxidative stability follows the order PMMABA > PMMAEA > PMMAMA. The thermal degradation of the copolymers was studied by using thermogravimetric analysis (TGA). The normalized weight loss and differential fractional weight loss profiles indicated that the thermal stability of the copolymer increases with an increase in the percentage of alkyl acrylate and the thermal stability of poly(methyl methacrylate-co-alkyl acrylate)s follows the order PMMAMA > PMMAEA > PMMABA. The observed contrast in the order of photostability and thermal stability of the copolymers was attributed to different mechanisms involved for the scission of polymer chain and formation of different products in both the processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Owing to the complexity of the wear process, high stress grinding abrasion is quite different from two-body abrasive wear. Reported data on two-body abrasive wear reveal that the wear decreases with an increase in steel hardness. This relationship can be established without having to consider the microstructure of the steel grinding medium. However, it is known that hardness cannot be directly employed to predict the wear of steel balls under three-body grinding abrasion, as occurs during dry grinding of ores in ball mills. The present work suggests that the wear behaviour of grinding balls can be classified according to the microstructural family to which they belong. Thus, in this work on AISI 52100 steel, the separate groups of microstructures were spheroidite—pearlite, bainite, tempered martensite and martensite with retained austenite. It appears that wear behaviour of the first three groups follows the same trend as that observed for two-body wear. The data suggest that an optimum level of retained austenite could improve the wear resistance of microstructures containing martensite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flower development provides a model system to study mechanisms that govern pattern formation in plants. Most flowers consist of four organ types that are present in a specific order from the periphery to the centre of the flower. Reviewed here are studies on flower development in two model species: Arabidopsis thaliana and Antirrhinum majus that focus on the molecular genetic analysis of homeotic mutations affecting pattern formation in the flower. Based on these studies a model was proposed that explains how three classes of regulatory genes can together control the development of the correct pattern of organs in the flower. The universality of the basic tenets of the model is apparent from the analysis of the homologues of the Arabidopsis genes from other plant species

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infection of the skin or throat by Streptococcus dysgalactiae subspecies equisimilis (SDSE) may result in a number of human diseases. To understand mechanisms that give rise to new genetic variants in this species, we used multi-locus sequence typing (MLST) to characterise relationships in the SDSE population from India, a country where streptococcal disease is endemic. The study revealed Indian SDSE isolates have sequence types (STs) predominantly different to those reported from other regions of the world. Emm-ST combinations in India are also largely unique. Split decomposition analysis, the presence of emm-types in unrelated clonal complexes, and analysis of phylogenetic trees based on concatenated sequences all reveal an extensive history of recombination within the population. The ratio of recombination to mutation (r/m) events (11:1) and per site r/m ratio (41:1) in this population is twice as high as reported for SDSE from non-endemic regions. Recombination involving the emm-gene is also more frequent than recombination involving housekeeping genes, consistent with diversification of M proteins offering selective advantages to the pathogen. Our data demonstrate that genetic recombination in endemic regions is more frequent than non-endemic regions, and gives rise to novel local SDSE variants, some of which may have increased fitness or pathogenic potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radiatively heated levitated functional droplets with nanosilica suspensions exhibit three distinct stages namely pure evaporation, agglomeration, and finally structure formation. The temporal history of the droplet surface temperature shows two inflection points. One inflection point corresponds to a local maximum and demarcates the end of transient heating of the droplet and domination of vaporization. The second inflection point is a local minimum and indicates slowing down of the evaporation rate due to surface accumulation of nanoparticles. Morphology and final precipitation structures of levitated droplets are due to competing mechanisms of particle agglomeration, evaporation, and shape deformation. In this work, we provide a detailed analysis for each process and propose two important timescales for evaporation and agglomeration that determine the final diameter of the structure formed. It is seen that both agglomeration and evaporation timescales are similar functions of acoustic amplitude (sound pressure level), droplet size, viscosity, and density. However, we show that while the agglomeration timescale decreases with initial particle concentration, the evaporation timescale shows the opposite trend. The final normalized diameter can be shown to be dependent solely on the ratio of agglomeration to evaporation timescales for all concentrations and acoustic amplitudes. The structures also exhibit various aspect ratios (bowls, rings, spheroids) which depend on the ratio of the deformation timescale (t(def)) and the agglomeration timescale (t(g)). For t(def) < t(g), a sharp peak in aspect ratio is seen at low concentrations of nanosilica which separates high aspect ratio structures like rings from the low aspect ratio structures like bowls and spheroids. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4775791]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent observations of Sun-like stars, similar to our Sun in their surface temperature (5600-6000 K) and slow rotation (rotational period > 10 d), using the Kepler satellite by Maehara et al. (2012, Nature, 485, 478) have revealed the existence of superflares (with energy of 10(33)-10(35) erg). From statistical analyses of these superflares, it was found that superflares with energy of 10(34) erg occur once in 800 yr, and superflares with 10(35) erg occur once in 5000 yr. In this paper, we examine whether superflares with energy of 10(33)-10(35) erg could occur on the present Sun through the use of simple order-of-magnitude estimates based on current ideas related to the mechanisms of the solar dynamo. If magnetic flux is generated by differential rotation at the base of the convection zone, as assumed in typical dynamo models, it is possible that the present Sun would generate a large sunspot with a total magnetic flux of similar to 2 x 10(23) Mx (= G cm(2)) within one solar cycle period, and lead to superflares with an energy of 10(34) erg. To store a total magnetic flux of similar to 10(24) Mx, necessary for generating 10(35) erg superflares, it would take similar to 40 yr. Hot Jupiters have often been argued to be a necessary ingredient for the generation of superflares, but we found that they do not play any essential role in the generation of magnetic flux in the star itself, if we consider only the magnetic interaction between the star and the hot Jupiter. This seems to be consistent with Maehara et al.'s finding of 148 superflare-generating solar-type stars that do not have a hot Jupiter-like companion. Altogether, our simple calculations, combined with Maehara et al.'s analysis of superflares on Sun-like stars, show that there is a possibility that superflares of 10(34) erg would occur once in 800 yr on our present Sun.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many aspects of skeletal muscle biology are remarkably similar between mammals and tiny insects, and experimental models of mice and flies (Drosophila) provide powerful tools to understand factors controlling the growth, maintenance, degeneration (atrophy and necrosis), and regeneration of normal and diseased muscles, with potential applications to the human condition. This review compares the limb muscles of mice and the indirect flight muscles of flies, with respect to the mechanisms of adult myofiber formation, homeostasis, atrophy, hypertrophy, and the response to muscle degeneration, with some comment on myogenic precursor cells and common gene regulatory pathways. There is a striking similarity between the species for events related to muscle atrophy and hypertrophy, without contribution of any myoblast fusion. Since the flight muscles of adult flies lack a population of reserve myogenic cells (equivalent to satellite cells), this indicates that such cells are not required for maintenance of normal muscle function. However, since satellite cells are essential in postnatal mammals for myogenesis and regeneration in response to myofiber necrosis, the extent to which such regeneration might be possible in flight muscles of adult flies remains unclear. Common cellular and molecular pathways for both species are outlined related to neuromuscular disorders and to age-related loss of skeletal muscle mass and function (sarcopenia). The commonality of events related to skeletal muscles in these disparate species (with vast differences in size, growth duration, longevity, and muscle activities) emphasizes the combined value and power of these experimental animal models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many aspects of skeletal muscle biology are remarkably similar between mammals and tiny insects, and experimental models of mice and flies (Drosophila) provide powerful tools to understand factors controlling the growth, maintenance, degeneration (atrophy and necrosis), and regeneration of normal and diseased muscles, with potential applications to the human condition. This review compares the limb muscles of mice and the indirect flight muscles of flies, with respect to the mechanisms of adult myofiber formation, homeostasis, atrophy, hypertrophy, and the response to muscle degeneration, with some comment on myogenic precursor cells and common gene regulatory pathways. There is a striking similarity between the species for events related to muscle atrophy and hypertrophy, without contribution of any myoblast fusion. Since the flight muscles of adult flies lack a population of reserve myogenic cells (equivalent to satellite cells), this indicates that such cells are not required for maintenance of normal muscle function. However, since satellite cells are essential in postnatal mammals for myogenesis and regeneration in response to myofiber necrosis, the extent to which such regeneration might be possible in flight muscles of adult flies remains unclear. Common cellular and molecular pathways for both species are outlined related to neuromuscular disorders and to age-related loss of skeletal muscle mass and function (sarcopenia). The commonality of events related to skeletal muscles in these disparate species (with vast differences in size, growth duration, longevity, and muscle activities) emphasizes the combined value and power of these experimental animal models.