37 resultados para Family stress
em Indian Institute of Science - Bangalore - Índia
Resumo:
Methylglyoxal (MG) is a reactive metabolic intermediate generated during various cellular biochemical reactions, including glycolysis. The accumulation of MG indiscriminately modifies proteins, including important cellular antioxidant machinery, leading to severe oxidative stress, which is implicated in multiple neurodegenerative disorders, aging, and cardiac disorders. Although cells possess efficient glyoxalase systems for detoxification, their functions are largely dependent on the glutathione cofactor, the availability of which is self-limiting under oxidative stress. Thus, higher organisms require alternate modes of reducing the MG-mediated toxicity and maintaining redox balance. In this report, we demonstrate that Hsp31 protein, a member of the ThiJ/DJ-1/PfpI family in Saccharomyces cerevisiae, plays an indispensable role in regulating redox homeostasis. Our results show that Hsp31 possesses robust glutathione-independent methylglyoxalase activity and suppresses MG-mediated toxicity and ROS levels as compared with another paralog, Hsp34. On the other hand, glyoxalase-defective mutants of Hsp31 were found highly compromised in regulating the ROS levels. Additionally, Hsp31 maintains cellular glutathione and NADPH levels, thus conferring protection against oxidative stress, and Hsp31 relocalizes to mitochondria to provide cytoprotection to the organelle under oxidative stress conditions. Importantly, human DJ-1, which is implicated in the familial form of Parkinson disease, complements the function of Hsp31 by suppressing methylglyoxal and oxidative stress, thus signifying the importance of these proteins in the maintenance of ROS homeostasis across phylogeny.
Resumo:
Enzymes belonging to the M1 family play important cellular roles and the key amino acids (aa) in the catalytic domain are conserved. However, C-terminal domain aa are highly variable and demonstrate distinct differences in organization. To address a functional role for the C-terminal domain, progressive deletions were generated in Tricorn interacting factor F2 from Thermoplasma acidophilum (F2) and Peptidase N from Escherichia coli (PepN). Catalytic activity was partially reduced in PepN lacking 4 C-terminal residues (PepNΔC4) whereas it was greatly reduced in F2 lacking 10 C-terminal residues (F2ΔC10) or PepN lacking eleven C-terminal residues (PepNΔC11). Notably, expression of PepNΔC4, but not PepNΔC11, in E. coliΔpepN increased its ability to resist nutritional and high temperature stress, demonstrating physiological significance. Purified C-terminal deleted proteins demonstrated greater sensitivity to trypsin and bound stronger to 8-amino 1-napthalene sulphonic acid (ANS), revealing greater numbers of surface exposed hydrophobic aa. Also, F2 or PepN containing large aa deletions in the C-termini, but not smaller deletions, were present in high amounts in the insoluble fraction of cell extracts probably due to reduced protein solubility. Modeling studies, using the crystal structure of E. coli PepN, demonstrated increase in hydrophobic surface area and change in accessibility of several aa from buried to exposed upon deletion of C-terminal aa. Together, these studies revealed that non-conserved distal C-terminal aa repress the surface exposure of apolar aa, enhance protein solubility, and catalytic activity in two soluble and distinct members of the M1 family.
Resumo:
Plants are sessile organisms that have evolved a variety of mechanisms to maintain their cellular homeostasis under stressful environmental conditions. Survival of plants under abiotic stress conditions requires specialized group of heat shock protein machinery, belonging to Hsp70:J-protein family. These heat shock proteins are most ubiquitous types of chaperone machineries involved in diverse cellular processes including protein folding, translocation across cell membranes, and protein degradation. They play a crucial role in maintaining the protein homeostasis by reestablishing functional native conformations under environmental stress conditions, thus providing protection to the cell. J-proteins are co-chaperones of Hsp70 machine, which play a critical role by stimulating Hsp70s ATPase activity, thereby stabilizing its interaction with client proteins. Using genome-wide analysis of Arabidopsis thaliana, here we have outlined identification and systematic classification of J-protein co-chaperones which are key regulators of Hsp70s function. In comparison with Saccharomyces cerevisiae model system, a comprehensive domain structural organization, cellular localization, and functional diversity of A. thaliana J-proteins have also been summarized. Electronic supplementary material The online version of this article (doi:10.1007/s10142-009-0132-0) contains supplementary material, which is available to authorized users.
Resumo:
Escherichia coil encodes two aminopeptidases belonging to the M17 family: Peptidase A (PepA) and Peptidase B (PepB). To gain insights into their substrate specificities, PepA or PepB were overexpressed in Delta pepN, which shows greatly reduced activity against the majority of amino acid substrates. Overexpression of PepA or PepB increases catalytic activity of several aminopeptidase substrates and partially rescues growth of Delta pepN during nutritional downshift and hightemperature stress. Purified PepA and PepB display broad substratespecificity and Leu, Lys, Met and Gly are preferred substrates. However, distinct differences are observed between these two paralogs: PepA is more stable at high temperature whereas PepB displays broader substrate specificity as it cleaves Asp and insulin B chain peptide. Importantly, this strategy, i.e. overexpression of peptidases in Delta pepN and screening a panel of substrates for cleavage, can be used to rapidly identify peptidases with novel substrate specificities encoded in genomes of different organisms. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Peptidase N (PepN), the sole M1 family member in Escherichia coli, displays broad substrate specificity and modulates stress responses: it lowers resistance to sodium salicylate (NaSal)-induced stress but is required during nutritional downshift and high temperature (NDHT) stress. The expression of PepN does not significantly change during different growth phases in LB or NaSal-induced stress; however, PepN amounts are lower during NDHT stress. To gain mechanistic insights on the roles of catalytic activity of PepN in modulating these two stress responses, alanine mutants of PepN replacing E264 (GAMEN motif) and E298 (HEXXH motif) were generated. There are no major structural changes between purified wild type (WT) and mutant proteins, which are catalytically inactive. Importantly, growth profiles of Delta pepN upon expression of WT or mutant proteins demonstrated the importance of catalytic activity during NDHT but not NaSal-induced stress. Further fluorescamine reactivity studies demonstrated that the catalytic activity of PepN is required to generate higher intracellular amounts of free N-terminal amino acids; consequently, the lower growth of Delta pepN during NDHT stress increases with high amounts of casamino acids. Together, this study sheds insights on the expression and functional roles of the catalytic activity of PepN during adaptation to NDHT stress. (C) 2012 Elsevier GmbH. All rights reserved.
Resumo:
Objective: In this study, we report the role of miRNAs involved under nitrogen starvation from widely grown vegetable crop, French bean. In recent years, a great deal of attention has been paid to the elucidation of miRNAs involved in low nitrate stress. Methods: To identify miRNAs expressed under stress, cDNA libraries were analyzed. Results: We reported the nine potential miRNAs with 67 targets involved in nutrient transporters and other stress specific genes. Among the miRNA sequences obtained 6 sequences belong to miR172 family, one with miR169. RT-PCR analysis of expression of miR172 family was induced upon low nitrate stress while miR169 family was repressed. In addition, Pvu-SN7b and Pvu-miR16 may be new members of miRNA172 and miR169 families, respectively. Conclusion: The targets of Pvu-SN7b were major protein kinases, one among which is the Protein Kinase CK2. CK2 Kinase is found to involve in transcription-directed signaling, gene control and cell-cycle regulation. Other targets of Pvu-SN7b were involved in DNA-dependent transcription regulation, photo-periodism, calcium-mediated signaling. Pvu-miR16 targets Thymidine kinase, the key enzyme of deoxy-nucleotide synthesis. The cleavage of these targets affects cell proliferation there by affecting nodule formation. Pvu-miR8 inhibits translation of its target protein Pre-protein translocase, a membrane-bound protein transporter involved in trans-membrane protein transportation. Together these results denote the response and role of miRNAs to nitrate-limiting conditions in French bean.
Resumo:
Mycobacteria are endowed with rich and diverse machinery for the synthesis, utilization, and degradation of cAMP. The actions of cyclic nucleotides are generally mediated by binding of cAMP to conserved and well characterized cyclic nucleotide binding domains or structurally distinct cGMP-specific and -regulated cyclic nucleotide phosphodiesterase, adenylyl cyclase, and E. coli transcription factor FhlA (GAF) domain-containing proteins. Proteins with cyclic nucleotide binding and GAF domains can be identified in the genome of mycobacterial species, and some of them have been characterized. Here, we show that a significant fraction of intracellular cAMP is bound to protein in mycobacterial species, and by using affinity chromatography techniques, we identify specific universal stress proteins (USP) as abundantly expressed cAMP-binding proteins in slow growing as well as fast growing mycobacteria. We have characterized the biochemical and thermodynamic parameters for binding of cAMP, and we show that these USPs bind cAMP with a higher affinity than ATP, an established ligand for other USPs. We determined the structure of the USP MSMEG_3811 bound to cAMP, and we confirmed through structure-guided mutagenesis, the residues important for cAMP binding. This family of USPs is conserved in all mycobacteria, and we suggest that they serve as ``sinks'' for cAMP, making this second messenger available for downstream effectors as and when ATP levels are altered in the cell.
Resumo:
Heat shock promoters of mycobacteria are strong promoters that become rapidly upregulated during macrophage infection and thus serve as valuable candidates for expressing foreign antigens in recombinant BCG vaccine. In the present study, a new heat shock promoter controlling the expression of the groESL1 operon was identified and characterized. Mycobacterium tuberculosis groESL1 operon codes for the immunodominant 10 kDa (Rv3418c, GroES/Cpn10/Hsp10) and 60 kDa (Rv3417c, GroEL1/Cpn60.1/Hsp60) heat shock proteins. The basal promoter region was 115 bp, while enhanced activity was seen only with a 277-bp fragment. No promoter element was seen in the groES-groEL1 intergenic region. This operon codes for a bicistronic mRNA transcript as determined by reverse transcriptase-PCR and Northern blot analysis. Primer extension analysis identified two transcriptional start sites (TSSs) TSS1 (-236) and TSS2 (-171), out of which one (TSS2) was heat inducible. The groE promoter was more active than the groEL2 promoter in Mycobacterium smegmatis. Further, it was found to be differentially regulated under stress conditions, while the groEL2 promoter was constitutive.
Resumo:
In standard laboratory consolidation tests, only the fraction of soil passing through a particular size of the sieve, called the matrix material, is used. This size is usually restricted to 1/10 of the height of the consolidation ring. Particles larger than this size that are removed before the test may consist of gravel, fragments of rock, or other coarse materials. Hence, it is not possible to estimate the compressibility and permeability of the total material based on the compressibility and permeability behavior obtained from laboratory consolidation tests on the matrix material. In the present investigation an attempt has been made to estimate the compressibility and permeability behavior of the total material based on the compressibility and permeability behavior of the matrix material. The results indicate that the presence of coarse particles will reduce the compressibility of the soil in proportion to the coarse fraction present in the whole soil and will not affect the permeability of the soil for the range investigated. If the coarse fraction exceeds the Limiting percentage, the void ratio-vertical effective stress path will also start to deviate from the predicted path. An expression has been developed to estimate approximately the deviating pressure, and it is found to depend on the soil type as well as the percent clay fraction.
Resumo:
In this work, two families of asymptotic near-tip stress fields are constructed in an elastic-ideally plastic FCC single crystal under mode I plane strain conditions. A crack is taken to lie on the (010) plane and its front is aligned along the [(1) over bar 01] direction. Finite element analysis is first used to systematically examine the stress distributions corresponding to different constraint levels. The general framework developed by Rice (Mech Mater 6:317-335, 1987) and Drugan (J Mech Phys Solids 49:2155-2176, 2001) is then adopted to generate low triaxiality solutions by introducing an elastic sector near the crack tip. The two families of stress fields are parameterized by the normalized opening stress (tau(A)(22)/tau(o)) prevailing in the plastic sector in front of the tip and by the coordinates of a point where elastic unloading commences in stress space. It is found that the angular stress variations obtained from the analytical solutions show good agreement with finite element analysis.
Resumo:
Plates with V-through edge notches subjected to pure bending and specimens with rectangular edge-through-notches subjected to combined bending and axial pull were investigated (under live-load and stress-frozen conditions) in a completely nondestructive manner using scattered-light photoelasticity. Stress-intensity factors (SIFs) were evaluated by analysing the singular stress distributions near crack-tips. Improved methods are suggested for the evaluation of SIFs. The thickness-wise variation of SIFs is also obtained in the investigation. The results obtained are compared with the available theoretical solutions.
Resumo:
An experimental investigation by two-dimensional photoelastic technique is carried out to study the stress distribution and to determine the stress-intensity factors for arbitrarily oriented cracks in thin cylindrical shells subjected to torsion. A new method is employed to evaluate the pure and mixed-mode SIF's.
Resumo:
Results of photoelastic investigations on single edge-notch tension specimens of varying notch angle and crack length are reported. The experimental results of Mode I stress intensity factors are compared with analytical results.