7 resultados para Fair Haven
em Indian Institute of Science - Bangalore - Índia
Resumo:
In public utilities, under supply constraints, fairness considerations lead to a market failure. This paper characterizes a two-period principal-agent contract for demand management, that mitigates this market failure in urban water systems. The contract is designed as an extensive form mechanism using subgame perfect Nash equilibrium (SPNE) as the solution concept. The contract is fair; and is shown to be economically efficient if, in case of deviation by the agent, the gain to the agent and the loss to the principal are small. It is shown that the assumption can be avoided in an infinite horizon contract.
Resumo:
We develop new scheduling algorithms for the IEEE 802.16d OFDMA/TDD based broadband wireless access system, in which radio resources of both time and frequency slots are dynamically shared by all users. Our objective is to provide a fair and efficient allocation to all the users to satisfy their quality of service.
Resumo:
In Universal Mobile Telecommunication Systems (UMTS), the Downlink Shared Channel (DSCH) can be used for providing streaming services. The traffic model for streaming services is different from the commonly used continuously- backlogged model. Each connection specifies a required service rate over an interval of time, k, called the "control horizon". In this paper, our objective is to determine how k DSCH frames should be shared among a set of I connections. We need a scheduler that is efficient and fair and introduce the notion of discrepancy to balance the conflicting requirements of aggregate throughput and fairness. Our motive is to schedule the mobiles in such a way that the schedule minimizes the discrepancy over the k frames. We propose an optimal and computationally efficient algorithm, called STEM+. The proof of the optimality of STEM+, when applied to the UMTS rate sets is the major contribution of this paper. We also show that STEM+ performs better in terms of both fairness and aggregate throughput compared to other scheduling algorithms. Thus, STEM+ achieves both fairness and efficiency and is therefore an appealing algorithm for scheduling streaming connections.
Resumo:
The literature on pricing implicitly assumes an "infinite data" model, in which sources can sustain any data rate indefinitely. We assume a more realistic "finite data" model, in which sources occasionally run out of data; this leads to variable user data rates. Further, we assume that users have contracts with the service provider, specifying the rates at which they can inject traffic into the network. Our objective is to study how prices can be set such that a single link can be shared efficiently and fairly among users in a dynamically changing scenario where a subset of users occasionally has little data to send. User preferences are modelled by concave increasing utility functions. Further, we introduce two additional elements: a convex increasing disutility function and a convex increasing multiplicative congestion-penally function. The disutility function takes the shortfall (contracted rate minus present rate) as its argument, and essentially encourages users to send traffic at their contracted rates, while the congestion-penalty function discourages heavy users from sending excess data when the link is congested. We obtain simple necessary and sufficient conditions on prices for fair and efficient link sharing; moreover, we show that a single price for all users achieves this. We illustrate the ideas using a simple experiment.
Resumo:
The literature on pricing implicitly assumes an "infinite data" model, in which sources can sustain any data rate indefinitely. We assume a more realistic "finite data" model, in which sources occasionally run out of data. Further, we assume that users have contracts with the service provider, specifying the rates at which they can inject traffic into the network. Our objective is to study how prices can be set such that a single link can be shared efficiently and fairly among users in a dynamically changing scenario where a subset of users occasionally has little data to send. We obtain simple necessary and sufficient conditions on prices such that efficient and fair link sharing is possible. We illustrate the ideas using a simple example
Resumo:
We consider the problem of ``fair'' scheduling the resources to one of the many mobile stations by a centrally controlled base station (BS). The BS is the only entity taking decisions in this framework based on truthful information from the mobiles on their radio channel. We study the well-known family of parametric alpha-fair scheduling problems from a game-theoretic perspective in which some of the mobiles may be noncooperative. We first show that if the BS is unaware of the noncooperative behavior from the mobiles, the noncooperative mobiles become successful in snatching the resources from the other cooperative mobiles, resulting in unfair allocations. If the BS is aware of the noncooperative mobiles, a new game arises with BS as an additional player. It can then do better by neglecting the signals from the noncooperative mobiles. The BS, however, becomes successful in eliciting the truthful signals from the mobiles only when it uses additional information (signal statistics). This new policy along with the truthful signals from mobiles forms a Nash equilibrium (NE) that we call a Truth Revealing Equilibrium. Finally, we propose new iterative algorithms to implement fair scheduling policies that robustify the otherwise nonrobust (in presence of noncooperation) alpha-fair scheduling algorithms.
Resumo:
The correctness of a hard real-time system depends its ability to meet all its deadlines. Existing real-time systems use either a pure real-time scheduler or a real-time scheduler embedded as a real-time scheduling class in the scheduler of an operating system (OS). Existing implementations of schedulers in multicore systems that support real-time and non-real-time tasks, permit the execution of non-real-time tasks in all the cores with priorities lower than those of real-time tasks, but interrupts and softirqs associated with these non-real-time tasks can execute in any core with priorities higher than those of real-time tasks. As a result, the execution overhead of real-time tasks is quite large in these systems, which, in turn, affects their runtime. In order that the hard real-time tasks can be executed in such systems with minimal interference from other Linux tasks, we propose, in this paper, an integrated scheduler architecture, called SchedISA, which aims to considerably reduce the execution overhead of real-time tasks in these systems. In order to test the efficacy of the proposed scheduler, we implemented partitioned earliest deadline first (P-EDF) scheduling algorithm in SchedISA on Linux kernel, version 3.8, and conducted experiments on Intel core i7 processor with eight logical cores. We compared the execution overhead of real-time tasks in the above implementation of SchedISA with that in SCHED_DEADLINE's P-EDF implementation, which concurrently executes real-time and non-real-time tasks in Linux OS in all the cores. The experimental results show that the execution overhead of real-time tasks in the above implementation of SchedISA is considerably less than that in SCHED_DEADLINE. We believe that, with further refinement of SchedISA, the execution overhead of real-time tasks in SchedISA can be reduced to a predictable maximum, making it suitable for scheduling hard real-time tasks without affecting the CPU share of Linux tasks.