4 resultados para Failed States Index

em Indian Institute of Science - Bangalore - Índia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The undrained shear strength of remoulded soils is of great concern in geotechnical engineering applications. This study aims to develop a reliable approach for determining the undrained shear strength of remoulded fine-grained soils, through the use of index test results, at both the plastic and semi-solid states of consistency. Experimental investigation and subsequent analysis involving a number of fine-grained soils of widely varying plasticity and geological origin have led to a two-parameter linear model of the relationship between logarithm of remoulded undrained shear strength and liquidity index. The numerical values of the parameters are found to be dependent to a lesser extent on the soil group and to a greater extent on the soil state. Based on the values of regression coefficient, ranking index and ranking distance, it seems that the relationship represents the experimental results well. It may be pointed out that the possibility of such a relationship in the semi-solid state of a soil has not been explored in the past. It is also shown that the shear strength at the plastic limit is about 32-34 times that at the liquid limit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The undrained shear strength of remoulded soils is of great concern in geotechnical engineering applications. This study aims to develop a reliable approach for determining the undrained shear strength of remoulded fine-grained soils, through the use of index test results, at both the plastic and semi-solid states of consistency. Experimental investigation and subsequent analysis involving a number of fine-grained soils of widely varying plasticity and geological origin have led to a two-parameter linear model of the relationship between logarithm of remoulded undrained shear strength and liquidity index. The numerical values of the parameters are found to be dependent to a lesser extent on the soil group and to a greater extent on the soil state. Based on the values of regression coefficient, ranking index and ranking distance, it seems that the relationship represents the experimental results well. It may be pointed out that the possibility of such a relationship in the semi-solid state of a soil has not been explored in the past. It is also shown that the shear strength at the plastic limit is about 32–34 times that at the liquid limit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monophasic Ba2NaNb5O15 was crystallized at nanometer scale (12-36 nm) in 2BaO-0.5Na(2)O-2.5Nb(2)O(5)- 4.5B(2)O(3) glass system. To begin with, optically transparent glasses, in this system, were fabricated via the conventional melt. quenching technique. The amorphous and glassy characteristics of the as-quenched samples were respectively confirmed by X-ray powder diffraction and differential thermal analyses. Nearly homogeneous distribution of Ba2NaNb5O15 (BNN) nanocrystals associated with tungsten bronze structure akin to their bulk parent structure was accomplished by subjecting the as-fabricated glasses to appropriate heat-treatment temperatures. Indeed transmission electron microscopy (TEM) carried out on these samples corroborated the presence of Ba2NaNb5O15 nanocrystals dispersed in a continuous glass matrix. The as-quenched glasses were similar to 75% transparent in the visible range of the electromagnetic spectrum. The optical band gap and refractive index were found to have crystallite size (at nanoscale) dependence. The optical band gap increased with the decrease in crystallite size. The refractive indices of the glass nanocrystal composites as determined by Brewster angle method were rationalized using different empirical models. The refractive index dispersion with wavelength of light was analyzed on the basis of the Sellmeier relations. At room temperature under UV excitation (355 nm) these glass nanocrystal composites displayed violet-blue emission which was ascribed to the defects states.