63 resultados para Face array
em Indian Institute of Science - Bangalore - Índia
Resumo:
Pentacyclic ketones 10a-e (snoutan-9-ones) undergo nucleophilic additions with the same facial preference as the corresponding norsnoutanones 9a-e, but with markedly reduced selectivity, revealing the involvement of electrostatic effects in the former and implying the importance of hyperconjugative orbital interactions in determining pi-face selectivity in the latter systems.
Resumo:
Fluctuation of field emission current from carbon nanotubes (CNTs) poses certain difficulties for their use in nanobiomedical X-ray devices and imaging probes. This problem arises due to deformation of the CNTs due to electrodynamic force field and electron-phonon interaction. It is of great importance to have precise control of emitted electron beams very near the CNT tips. In this paper, a new array configuration with stacked array of CNTs is analysed and it is shown that the current density distribution is greatly localised at the middle of the array, that the scatter due to electrodynamic force field is minimised and that the temperature transients are much smaller compared to those in an array with random height distribution.
Resumo:
Experimental investigations are carried out in the IISc hypersonic shock tunnel on film cooling effectiveness of a single jet (diameter 2 mm and 0.9 mm), and an array forward facing of micro-jets (diameter 300 mu m each) of same effective area (corresponding to the respective single jet). The single jet and the corresponding micro-jets are injected from the stagnation zone of a blunt cone model (58, apex angle and nose radius of 35 mm). Nitrogen and Helium are injected as coolant gases. Experiments are performed at freestream Mach number 5.9, at 0 degrees angle of attack, with a stagnation enthalpy of 1.84 MJ/kg, with and without injections. The ratios of the jet stagnation pressure to the freestream pitot pressure used in the present study are 1.2 and 1.45. Up to 50% reduction in surface heat transfer rate was observed with the array of micro-jets, compared to that of the respective single jet with nitrogen as the coolant, while the corresponding eduction was up to 37% for helium injection, with the schlieren flow visualizations showing no major change in the shock standoff distance, and thus no major changes in other aerodynamic aspects such as drag.
Resumo:
A rectangular universal cellular array consisting of cells having three inputs and one output is described. This array is based on the Reed-Muller canonical expansion of a switching function. Although the total number of external input pins required in this array is the same as that of a rectangular array proposed in the literature, the number of cells is very much less.
Resumo:
In this paper we discuss a new technique to image the surfaces of metallic substrates using field emission from a pointed array of carbon nanotubes (CNTs). We consider a pointed height distribution of the CNT array under a diode configuration with two side gates maintained at a negative potential to obtain a highly intense beam of electrons localized at the center of the array. The CNT array on a metallic substrate is considered as the cathode and the test substrate as the anode. Scanning the test Substrate with the cathode reveals that the field emission current is highly sensitive to the surface features with nanometer resolution. Surface features of semi-circular, triangular and rectangular geometries (projections and grooves) are considered for simulation. This surface scanning/mapping technique can be applied for surface roughness measurements with nanoscale accuracy. micro/nano damage detection, high precision displacement sensors, vibrometers and accelerometers. among other applications.
Resumo:
Fluctuation of field emission in carbon nanotubes (CNTs) is riot desirable in many applications and the design of biomedical x-ray devices is one of them. In these applications, it is of great importance to have precise control of electron beams over multiple spatio-temporal scales. In this paper, a new design is proposed in order to optimize the field emission performance of CNT arrays. A diode configuration is used for analysis, where arrays of CNTs act as cathode. The results indicate that the linear height distribution of CNTs, as proposed in this study, shows more stable performance than the conventionally used unifrom distribution.
Resumo:
Designing an ultrahigh density linear superlattice array consisting of periodic blocks of different semiconductors in the strong confinement regime via a direct synthetic route remains an unachieved challenge in nanotechnology. We report a general synthesis route for the formulation of a large-area ultrahigh density superlattice array that involves adjoining multiple units of ZnS rods by prolate US particles at the tips. A single one-dimensional wire is 300-500 nm long and consists of periodic quantum wells with a barrier width of 5 nm provided by ZnS and a well width of 1-2 nm provided by CdS, defining a superlattice structure. The synthesis route allows for tailoring of ultranarrow laserlike emissions (fwhm approximate to 125 meV) originating from strong interwell energy dispersion along with control of the width, pitch, and registry of the superlattice assembly. Such an exceptional high-density superlattice array could form the basis of ultrahigh density memories in addition to offering opportunities for technological advancement in conventional heterojunction-based device applications.
Resumo:
Context sensitive pointer analyses based on Whaley and Lam’s bddbddb system have been shown to scale to large Java programs. We provide a technique to incorporate flow sensitivity for Java fields into one such analysis and obtain an escape analysis based on it. First, we express an intraprocedural field flow sensitive analysis, using Fink et al.’s Heap Array SSA form in Datalog. We then extend this analysis interprocedurally by introducing two new φ functions for Heap Array SSA Form and adding deduction rules corresponding to them. Adding a few more rules gives us an escape analysis. We describe two types of field flow sensitivity: partial (PFFS) and full (FFFS), the former without strong updates to fields and the latter with strong updates. We compare these analyses with two different (field flow insensitive) versions of Whaley-Lam analysis: one of which is flow sensitive for locals (FS) and the other, flow insensitive for locals (FIS). We have implemented this analysis on the bddbddb system while using the SOOT open source framework as a front end. We have run our analysis on a set of 15 Java programs. Our experimental results show that the time taken by our field flow sensitive analyses is comparable to that of the field flow insensitive versions while doing much better in some cases. Our PFFS analysis achieves average reductions of about 23% and 30% in the size of the points-to sets at load and store statements respectively and discovers 71% more “caller-captured” objects than FIS.
Resumo:
Spike detection in neural recordings is the initial step in the creation of brain machine interfaces. The Teager energy operator (TEO) treats a spike as an increase in the `local' energy and detects this increase. The performance of TEO in detecting action potential spikes suffers due to its sensitivity to the frequency of spikes in the presence of noise which is present in microelectrode array (MEA) recordings. The multiresolution TEO (mTEO) method overcomes this shortcoming of the TEO by tuning the parameter k to an optimal value m so as to match to frequency of the spike. In this paper, we present an algorithm for the mTEO using the multiresolution structure of wavelets along with inbuilt lowpass filtering of the subband signals. The algorithm is efficient and can be implemented for real-time processing of neural signals for spike detection. The performance of the algorithm is tested on a simulated neural signal with 10 spike templates obtained from [14]. The background noise is modeled as a colored Gaussian random process. Using the noise standard deviation and autocorrelation functions obtained from recorded data, background noise was simulated by an autoregressive (AR(5)) filter. The simulations show a spike detection accuracy of 90%and above with less than 5% false positives at an SNR of 2.35 dB as compared to 80% accuracy and 10% false positives reported [6] on simulated neural signals.
Resumo:
The increasing use of 3D modeling of Human Face in Face Recognition systems, User Interfaces, Graphics, Gaming and the like has made it an area of active study. Majority of the 3D sensors rely on color coded light projection for 3D estimation. Such systems fail to generate any response in regions covered by Facial Hair (like beard, mustache), and hence generate holes in the model which have to be filled manually later on. We propose the use of wavelet transform based analysis to extract the 3D model of Human Faces from a sinusoidal white light fringe projected image. Our method requires only a single image as input. The method is robust to texture variations on the face due to space-frequency localization property of the wavelet transform. It can generate models to pixel level refinement as the phase is estimated for each pixel by a continuous wavelet transform. In cases of sparse Facial Hair, the shape distortions due to hairs can be filtered out, yielding an estimate for the underlying face. We use a low-pass filtering approach to estimate the face texture from the same image. We demonstrate the method on several Human Faces both with and without Facial Hairs. Unseen views of the face are generated by texture mapping on different rotations of the obtained 3D structure. To the best of our knowledge, this is the first attempt to estimate 3D for Human Faces in presence of Facial hair structures like beard and mustache without generating holes in those areas.
Resumo:
The imaging performance of hololenses formed with four different geometries were studied through an analysis of their third-order aberration coefficients. It is found that the geometry proposed by Brandt (1969) gives the least residual aberration with minimum variation of this aberration with the reconstruction angle. When the ideal position of one of the construction beams is changed in order to generate a hololens array, the residual aberration is found to increase sharply, which in turn affects the image resolution among the multiplied images in the output. A hololens array was generated using Brandt's geometry with the help of a one-dimensional sinusoidal grating. The results of multiple imaging with the hololens array are presented. The image resolution is reasonably high and can be further improved by reducing the f-number of the hololenses.
Resumo:
The physical design of a VLSI circuit involves circuit partitioning as a subtask. Typically, it is necessary to partition a large electrical circuit into several smaller circuits such that the total cross-wiring is minimized. This problem is a variant of the more general graph partitioning problem, and it is known that there does not exist a polynomial time algorithm to obtain an optimal partition. The heuristic procedure proposed by Kernighan and Lin1,2 requires O(n2 log2n) time to obtain a near-optimal two-way partition of a circuit with n modules. In the VLSI context, due to the large problem size involved, this computational requirement is unacceptably high. This paper is concerned with the hardware acceleration of the Kernighan-Lin procedure on an SIMD architecture. The proposed parallel partitioning algorithm requires O(n) processors, and has a time complexity of O(n log2n). In the proposed scheme, the reduced array architecture is employed with due considerations towards cost effectiveness and VLSI realizability of the architecture.The authors are not aware of any earlier attempts to parallelize a circuit partitioning algorithm in general or the Kernighan-Lin algorithm in particular. The use of the reduced array architecture is novel and opens up the possibilities of using this computing structure for several other applications in electronic design automation.
Resumo:
The problem of narrowband CFAR (constant false alarm rate) detection of an acoustic source at an unknown location in a range-independent shallow ocean is considered. If a target is present, the received signal vector at an array of N sensors belongs to an M-dimensional subspace if N exceeds the number of propagating modes M in the ocean. A subspace detection method which utilises the knowledge of the signal subspace to enhance the detector performance is presented in thisMpaper. It is shown that, for a given number of sensors N, the performance of a detector using a vector sensor array is significantly better than that using a scalar sensor array. If a target is detected, the detector using a vector sensor array also provides a concurrent coarse estimate of the bearing of the target.
Resumo:
A damage detection and imaging methodology based on symmetry of neighborhood sensor path and similarity of signal patterns with respect to radial paths in a circular array of sensors has been developed It uses information regarding Limb wave propagation along with a triangulation scheme to rapidly locate and quantify the severity of damage without using all of the sensor data. In a plate like structure, such a scheme can be effectively employed besides full field imaging of wave scattering pattern from the damage, if present in the plate. This new scheme is validated experimentally. Hole and corrosion type damages have been detected and quantified using the proposed scheme successfully. A wavelet based cumulative damage index has been studied which shows monotonic sensitivity against the severity of the damage. which is most desired in a Structural Health Monitoring system. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
An algebraic generalization of the well-known binary q-function array to a multivalued q-function array is presented. It is possible to associate tree-structure realizations for binary q-functions and multivalued q-functions. Synthesis of multivalued functions using this array is very simple