22 resultados para FULLERENES
em Indian Institute of Science - Bangalore - Índia
Resumo:
On the basis of N(1s) core-level spectroscopic studies, it is found that nitrogen interacts with multimolecular films of C60. More interestingly, mass spectrometric studies show that contact-arc vaporization of graphite in a partial atmosphere of N2 or NH3 yields nitrogenous products tentatively assigned to species such as C70N2, C59N6, C59N4, and C59N2 involving addition of or substitution by nitrogen along with the species due to C2 and C4 losses.
Resumo:
In solution phase, aliphatic amines add on to fullerenes; vapourization of graphite in presence of methylamine gives nitrogeneous C60 derivatives. Reactions of C60 with SbCl5 and liquid Br2 yield halogen adducts.
Resumo:
In benzene solution, C60 and C70 interact weakly in the ground state with amines having favourable oxidation potentials. Picosecond time-resolved absorption measurements show that on photoexcilation, the weak complexes undergo charge separation to produce ion pairs which in turn undergo fast geminate recombination either to produce the triplet state of the fullerenes or give back the ground slate of the complex, depending on the oxidation potential of the amine. Free-ion yield is generally negligible.
Resumo:
Based on electronic absorption spectroscopy, C60 is found to form complexes with aromatic amines with an enthalpy of association in the range 9-16 kJ mol-1. Interaction of C70 with the amines is negligible. Cyclic voltammetric measurements confirm these observations.
Resumo:
Electronic absorption spectroscopy and fluorescence spectroscopy have been used to investigate the interaction of the fullerenes C60 and C70 with diethylaniline, and with aromatic solvents such as benzene. C60 interacts weakly with aromatic amines in the ground state while C70 does not interact at all. Steady state fluorescence emission and lifetime measurements show that both C60 and C70 form excited state complexes (exciplexes) with the amines in non-aromatic solvents such as methylcyclohexane, but not in benzene. In benzene, only fluorescence quenching is observed due to the interaction between the π systems of the aromatic solvent and the fullerene in the ground state. This is also borne out by the systematic study of solvent effects on the absorption and emission spectra of the fullerenes.
Resumo:
Investigations of a variety of transition metal clusters by means of high-energy spectroscopies including BIS show the occurrence of a metal-insulator transition with decrease in the cluster size. The chemical reactivity of the clusters also varies significantly with the size. Among the many fascinating properties of the fullerenes C60 and C70, a noteworthy one is the interaction between metal clusters and fullerenes. Phase transitions of fullerenes involving orientational disorder and pressure-induced decrease in the band gap of C60 are other novel features of interest.
Resumo:
Mass spectrometric studies show that contact-arc vaporization of graphite in a partial atmosphere of N2 or NH3 yields nitrogenous products tentatively assigned to species such as C70N2, C59N6, C59N4 and C59N2 involving addition of or substitution by nitrogen along with the species due to C2 and C4 losses. Mass spectrometry and other techniques have been employed to identify products of the nucleophilic addition of aliphatic amines to C60 and C70 in solution phase.
Resumo:
Photophysical properties of the singlet and triplet states of the fullerenes, C60 and C70, have been investigated in toluene, benzene, hexane and ethanol solutions by pico- and nano-second laser flash photolysis techniques. Lifetimes, extinction coefficients, quantum efficiencies of the formation of the excited states and such properties have been determined. True triplet�triplet absorption spectra of C60 and C70 are reported. C60, unlike C70, is found to undergo photoionization in ethanol solution giving solvated electrons.
Resumo:
Bonding in buckminsterfullerene, C60, can be described in terms of a unique canonical representation in which all six membered rings have a benzenoid Kekule structure while the pentagons are all made of exclusively single bonds. The corresponding valence bond structure reflects the full symmetry of the molecule and is consistent with the observed bond length variations. Computational support for the bonding description is provided using localized MO's obtained at the MNDO level. The requirement of benzenoid structures for all the hexagons can be used as a criterion of stability of fullerenes which complements the pentagon isolation rule. A convenient two-dimensional representation of the fullerene structures incorporating the above bonding description is suggested, especially for use in mechanistic discussions.
Resumo:
The stabilities of a number of small adducts as well as larger hydrides of C-60 and C-70 are reported using semiempirical MO methods. The data are shown to be consistent with the nature of bond alternation in the parent fullerenes and strain effects in the cage systems.
Resumo:
Solid state chemistry was in its infancy when the author got interested in the subject. In this article, the author outlines the manner in which the subject has grown over the last four decades, citing representative examples from his own contributions to the different facets of the subject. The various aspects covered include synthesis, structure, defects, phase transitions, transition metal oxides, catalysts, superconductors, metal clusters and fullerenes. In an effort to demonstrate the breadth and vitality of the subject, the author shares his own experiences and aspirations and gives expression to the agony and ecstacy in carrying out experimental research in such a frontier area in India.
Resumo:
Experiments have been carried out to optimize the yields of carbon nanotubes obtained by the arc-evaporation of graphite. Other types of carbon particles such as nanocrystalline graphite usually present along with the nanotubes are readily removed by heating the material in oxygen around 763 K. Clean nanotubes so obtained have been characterized by X-ray diffraction. The clean tubes are thermally more stable than graphite or fullerenes. The tips of carbon nanotubes are opened by reaction with oxygen, but more interestingly, when the oxygen produced by the decomposition of a metal oxide is used to open the tube tips, the metal formed in the process enters the nanotube. Electrical resistance of pressed pellets of clean tubes is not unlike that of graphite. Tunnelling conductance measurements on isolated tubes characterized by means of scanning tunnelling microscopy however show that the conductance gap increases with decreasing tube diameter.