11 resultados para FRESH PRODUCE
em Indian Institute of Science - Bangalore - Índia
Resumo:
This article examines, through a molecular perspective, the 'ozone-friendly' refrigerants R-134a and R-123 vis-Ã -vis R-12 and R-11, which are targeted to be phased out under the Montreal Protocol on Substances that Deplete the Ozone Layer, Final Act (1987). It appears that the molecular weight, size parameter, and dipole moment, of R-134a and R-123, may induce a pronounced effect on the chemical equilibrium of ice particles in the polar stratospheric clouds and subsequently influence the photochemical reactions therein. Non-polar, high-molecular-weight perfluoropropane (R-218), could be a better substitute for R-12, while R-134, which is a non-polar HFC of the ethane family, could also be a candidate although its molecular weight is lower than that of R-12. The search for a good substitute for R-11, however, must continue.
Resumo:
The effect of turbulence on the nonaxisymmetric flux rings of equipartition field strength in bipolar magnetic regions is studied on the basis of the small-scale momentum exchange mechanism and the giant cell drag combined with the Kelvin-Helmholtz drag mechanism. It is shown that the giant cell drag and small-scale momentum exchange mechanism can make equipartition flux loops emerge at low latitudes, in addition to making them exhibit the observed tilts. However, the sizes of the flux tubes have to be restricted to a couple of hundred kilometers. An ad hoc constraint on the footpoints of the flux loops is introduced by not letting them move in the phi direction, and it is found that equipartition fields of any size can be made to emerge at sunspot latitudes with the observed tilts by suitably adjusting the footpoint separations.
Resumo:
The combined milling at cryogenic temperature as well as room temperature (RT) has been carried out to prepare ultrafine NaCl crystallites. The milling has been done in evacuated tungsten carbide vials backfilled with high-purity Ar. The results indicate the effect duration of cryomilling prior to RT milling has a strong effect on the final crystallite size. The deformation aided sintering of NaCl crystallites during RT milling and leads to the formation of bimodal distribution of crystallites. The cuboidal-shaped NaCl crystallite undergoes a roughening transition due to plastic deformation. The experimental results are explained using the temperature-dependent mechanical properties of NaCl single crystals and plastic-deformation-induced roughening.
Resumo:
Six new vesicle-forming, cationic surfactant lipids are synthesized. Four of them contain 'flat' aromatic units at different locations of hydrophobic segments. In order to estimate the influence of aromatic units in the lipid monomer two other surfactant lipids of related structure with n-butyloxy units in the places of aromatic groups were also prepared. Transmission electron microscopy confirmed the vesicular membrane formation from these newly synthesized lipids. DSC or temperature-dependent keto-enol tautomerism of benzoylacetanilide-doped vesicles reveal a remarkable increase in the thermal stability of the membranes formed from aromatic surfactant lipids in contradistinction to their counterparts that contain n-butyloxy units. The enhanced thermal stability originates presumably as a consequence of inter-monomer stacking.
Resumo:
The Indian subcontinent divides the north Indian Ocean into two tropical basins, namely the Arabian Sea and the Bay of Bengal. The Arabian Sea has high salinity whereas the salinity of the Bay of Bengal is much lower due to the contrast in freshwater forcing of the two basins. The freshwater received by the Bay in large amounts during the summer monsoon through river discharge is flushed out annually by ocean circulation. After the withdrawal of the summer monsoon, the Ganga – Brahmaputra river plume flows first along the Indian coast and then around Sri Lanka into the Arabian Sea creating a low salinity pool in the southeastern Arabian Sea (SEAS). In the same region, during the pre-monsoon months of February – April, a warm pool, known as the Arabian Sea Mini Warm Pool (ASMWP), which is distinctly warmer than the rest of the Indian Ocean, takes shape. In fact, this is the warmest region in the world oceans during this period. Simulation of the river plume and its movement as well as its implications to thermodynamics has been a challenging problem for models of Indian Ocean. Here we address these issues using an ocean general circulation model – first we show that the model is capable of reproducing fresh plumes in the Bay of Bengal as well as its movement and then we use the model to determine the processes that lead to formation of the ASMWP. Hydrographic observations from the western Bay of Bengal have shown the presence of a fresh plume along the northern part of the Indian coast during summer monsoon. The Indian Ocean model when forced by realistic winds and climatological river discharge reproduces the fresh plume with reasonable accuracy. The fresh plume does not advect along the Indian coast until the end of summer monsoon. The North Bay Monsoon Current, which flows eastward in the northern Bay, separates the low salinity water from the more saline southern parts of the bay and thus plays an important role in the fresh water budget of the Bay of Bengal. The model also reproduces the surge of the fresh-plume along the Indian coast, into the Arabian Sea during northeast monsoon. Mechanisms that lead to the formation of the Arabian Sea Mini Warm Pool are investigated using several numerical experiments. Contrary to the existing theories, we find that salinity effects are not necessary for the formation of the ASMWP. The orographic effects of the Sahyadris (Western Ghats) and resulting reduction in wind speed leads to the formation of the ASMWP. During November – April, the SEAS behave as a low-wind heatdominated regime where the evolution of sea surface temperature is solely determined by atmospheric forcing. In such regions the evolution of surface layer temperature is not dependent on the characteristics of the subsurface ocean such as the barrier layer and temperature inversion.
Resumo:
This paper presents a novel algebraic formulation of the central problem of screw theory, namely the determination of the principal screws of a given system. Using the algebra of dual numbers, it shows that the principal screws can be determined via the solution of a generalised eigenproblem of two real, symmetric matrices. This approach allows the study of the principal screws of the general screw systems associated with a manipulator of arbitrary geometry in terms of closed-form expressions of its architecture and configuration parameters. The formulation is illustrated with examples of practical manipulators.
Resumo:
Ripe fruit need to signal their presence to attract dispersal agents. Plants may employ visual and/or olfactory sensory channels to signal the presence of ripe fruit. Visual signals of ripe fruit have been extensively investigated. However, the volatile signatures of ripe fruit that use olfactorily-oriented dispersers have been scarcely investigated. Moreover, as in flowers, where floral scents are produced at times when pollinators are active (diurnal versus nocturnal), whether plants can modulate the olfactory signal to produce fruit odours when dispersers are active in the diel cycle is completely unknown. We investigated day night differences in fruit odours in two species of figs, Ficus racemosa and Ficus benghalensis. The volatile bouquet of fruit of F.racemosa that are largely dispersed by bats and other mammals was dominated by fatty acid derivatives such as esters. In this species in which the ripe fig phase is very short, and where the figs drop off soon after ripening, there were no differences between day and night in fruit volatile signature. The volatile bouquet of fruit of F. benghalensis that has a long ripening period, however, and that remain attached to the tree for extended periods when ripe, showed an increase in fatty acid derivatives such as esters and of benzenoids such as benzaldehyde at night when they are dispersed by bats, and an elevation of sesquiterpenes during the day when they are dispersed by birds. For the first time we provide data that suggest that the volatile signal produced by fruit can show did l differences based on the activity period of the dispersal agent. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
The growing commercial applications had brought aluminium oxide nanoparticles under,toxicologists' purview. In the present study, the cytotoxicity of two different sized aluminium oxide nanoparticles (ANP(1), mean hydrodynamic diameter 82.6 +/- 22 nm and ANP(2), mean hydrodynamic diameter 246.9 +/- 39 nm) towards freshwater algal isolate Chlorella ellipsoids at low exposure levels (<= 1 mu g/mL) using sterile lake water as the test medium was assessed. The dissolution of alumina nanoparticles and consequent contribution towards toxicity remained largely unexplored owing to its presumed insoluble nature. Herein, the leached Al3+ ion mediated toxicity has been studied along with direct particulate toxicity to bring out the dynamics of toxicity through colloidal stability, biochemical, spectroscopic and microscopic analyses. The mean hydrodynamic diameter increased with time both for ANP(1) 82.6 +/- 22 nm (0 h) to 246.3 +/- 59 nm (24h), to 1204 +/- 140 nm (72 h)] and ANP(2) 246.9 +/- 39 nm (Oh) to 368.28 +/- 48 nm (24 h), to 1225.96 +/- 186 nm (72 h)] signifying decreased relative abundance of submicron sized particles (<1000 nm). The detailed cytotoxicity assays showed a significant reduction in the viability dependent on dose and exposure. A significant increase in ROS and LDH levels were noted for both ANPs at 1 mu g/mL concentration. The zeta potential and FT-IR analyses suggested surface chemical interaction between nanoparticles and algal cells. The substantial morphological changes and cell wall damage were confirmed through microscopic analyses (SEM, TEM, and CLSM). At 72 h, significant Al3+ ion release in the test medium 0.092 mu g/mL for ANP(1), and 0.19 mu g/mL for ANP(2)] was noted, and the resulting suspension containing leached ions caused significant cytotoxicity, revealing a substantial ionic contribution. This study indicates that both the nano-size and ionic dissolution play a significant role in the cytotoxicity of ANPs towards freshwater algae, and the exposure period largely determines the prevalent mode of nano-toxicity.
Resumo:
Silver nanoparticles (AgNPs) pose a high risk of exposure to the natural environment owing to their extensive usage in various consumer products. In the present study we attempted to understand the harmful effect of AgNPs at environmentally relevant low concentration levels (<= 1 ppm) towards two different freshwater bacterial isolates and their consortium. The standard plate count assay suggested that the AgNPs were toxic towards the fresh water bacterial isolates as well as the consortium, though toxicity was significantly reduced for the cells in the consortium. The oxidative stress assessment and membrane permeability studies corroborated with the toxicity data. The detailed electron microscopic studies suggested the cell degrading potential of the AgNPs, and the FT-IR studies confirmed the involvement of the surface groups in the toxic effects. No significant ion leaching from the AgNPs was observed at the applied concentration levels signifying the dominant role of the particle size, and size distribution in bacterial toxicity. The reduced toxicity for the cells in the consortium than the individual isolates has major significance in further studies on the ecotoxicity of the AgNPs. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
An electrochemical exfoliation based synthetic methodology to produce graphene is provided. An eco-friendly and non-toxic tetrasodium pyrophosphate solution in which the pyrophosphate anion acts as an intercalating ion was used as the electroactive media. Five different ion intercalation potentials were used. Characterization by microscopy, X-ray diffraction, Raman spectroscopy and UV-Visible spectroscopic techniques confirmed that all the potentials produced nano to micrometer sized graphene sheets. No trace of graphene oxide was detected. It was observed that (i) an increase in the intercalation potential increased the graphene yield and (ii) the defect density of graphene did not change significantly with a change in the intercalation potential.
Resumo:
1. Host-parasite interactions have the potential to influence broadscale ecological and evolutionary processes, levels of endemism, divergence patterns and distributions in host populations. Understanding the mechanisms involved requires identification of the factors that shape parasite distribution and prevalence. 2. A lack of comparative information on community-level host-parasite associations limits our understanding of the role of parasites in host population divergence processes. Avian malaria (haemosporidian) parasites in bird communities offer a tractable model system to examine the potential for pathogens to influence evolutionary processes in natural host populations. 3. Using cytochrome b variation, we characterized phylogenetic diversity and prevalence of two genera of avian haemosporidian parasites, Plasmodium and Haemoproteus, and analysed biogeographic patterns of lineages across islands and avian hosts, in southern Melanesian bird communities to identify factors that explain patterns of infection. 4. Plasmodium spp. displayed isolation-by-distance effects, a significant amount of genetic variation distributed among islands but insignificant amounts among host species and families, and strong local island effects with respect to prevalence. Haemoproteus spp. did not display isolation-by-distance patterns, showed marked structuring of genetic variation among avian host species and families, and significant host species prevalence patterns. 5. These differences suggest that Plasmodium spp. infection patterns were shaped by geography and the abiotic environment, whereas Haemoproteus spp. infection patterns were shaped predominantly by host associations. Heterogeneity in the complement and prevalence of parasite lineages infecting local bird communities likely exposes host species to a mosaic of spatially divergent disease selection pressures across their naturally fragmented distributions in southern Melanesia. Host associations for Haemoproteus spp. indicate a capacity for the formation of locally co-adapted host-parasite relationships, a feature that may limit intraspecific gene flow or range expansions of closely related host species.