156 resultados para FREE GROUPS
em Indian Institute of Science - Bangalore - Índia
Resumo:
We show that the algebraic intersection number of Scott and Swarup for splittings of free groups Coincides With the geometric intersection number for the sphere complex of the connected sum of copies of S-2 x S-1. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Splittings of a free group correspond to embedded spheres in the 3-manifold M = # (k) S (2) x S (1). These can be represented in a normal form due to Hatcher. In this paper, we determine the normal form in terms of crossings of partitions of ends corresponding to normal spheres, using a graph of trees representation for normal forms. In particular, we give a constructive proof of a criterion determining when a conjugacy class in pi (2)(M) can be represented by an embedded sphere.
Resumo:
We construct for free groups, which are codimension one analogues of geodesic laminations on surfaces. Other analogues that have been constructed by several authors are dimension-one instead of codimension-one. Our main result is that the space of such laminations is compact. This in turn is based on the result that crossing, in the sense of Scott-Swarup, is an open condition. Our construction is based on Hatcher's normal form for spheres in the model manifold.
Resumo:
The standard free energies of formation of CaO derived from a variety of high-temperature equilibrium measurements made by seven groups of experimentalists are significantly different from those given in the standard compilations of thermodynamic data. Indirect support for the validity of the compiled data comes from new solid-state electrochemical measurements using single-crystal CaF2 and SrF2 as electrolytes. The change in free energy for the following reactions are obtained: CaO + MgF2 --> MgO + CaF2 Delta G degrees = -68,050 -2.47 T(+/-100) J mol(-1) SrO + CaF2 --> SrF2 + CaO Delta G degrees = -35,010 + 6.39 T (+/-80) J mol(-1) The standard free energy changes associated with cell reactions agree with data in standard compilations within +/- 4 kJ mol(-1). The results of this study do not support recent suggestions for a major revision in thermodynamic data for CaO.
Resumo:
The maximum independent set problem is NP-complete even when restricted to planar graphs, cubic planar graphs or triangle free graphs. The problem of finding an absolute approximation still remains NP-complete. Various polynomial time approximation algorithms, that guarantee a fixed worst case ratio between the independent set size obtained to the maximum independent set size, in planar graphs have been proposed. We present in this paper a simple and efficient, O(|V|) algorithm that guarantees a ratio 1/2, for planar triangle free graphs. The algorithm differs completely from other approaches, in that, it collects groups of independent vertices at a time. Certain bounds we obtain in this paper relate to some interesting questions in the theory of extremal graphs.
Resumo:
The esterification of Ribonuclease-A in methanol/0.1 M hydrochloric acid has been studied by measuring the decrease in the number of titratable groups of the protein and estimating the amount of methanol incorporated. Esterification of nearly five of the 11 free carboxyl groups of the protein resulted in almost complete inactivation of the enzyme. The initial products of esterification have been chromatographed on Amberlite columns, and five partially active methyl ester derivatives of Ribonuclease-A have been isolated. The dimethyl ester, the initial product of esterification with reduced catalytic activity, has the carboxyl groups of Glu-49 and Asp-53 modified. Even in the non-aqueous solvent, as in the native structure of the protein in aqueous solution, these carboxyl groups are the fast reacting ones. Subsquently, the esterification reaction appears to proceed preferentially at the C-terminal region of the molecule. Comparison of the reactivities of carboxyl groups of Ribonuclease-A in acidic methanol to that known in aqueous solutions (with carbodiimides) suggests that the structure of Ribonuclease-A in the non-aqueous solvent resembles, at least in part, the structure in aqueous environment.
Resumo:
The effect of modification of carboxyl groups of Ribonuclease-Aa on the enzymatic activity and the antigenic structure of the protein has been studied. Modification of four of the eleven free carboxyl groups of the protein by esterification in anhydrous methanol/0.1 M hydrochloric acid resulted in nearly 80% loss in enzymatic activity but had very little influence on the antigenic structure of the protein. Further increases in the modification of the carboxyl groups caused a progressive loss in immunological activity, and the fully methylated RNase-A exhibited nearly 30% immunological activity. Concomitant with this change in the antigenic structure of the protein, the ability of the molecule to complement with RNase-S-protein increased, clearly indicating the unfolding of the peptide "tail" from the remainder of the molecule. The susceptibility to proteolysis, accessibility of methionine residues for orthobenzoquinone reaction and the loss in immunological activity of the more extensively esterified derivatives of RNase-A are suggestive of the more flexible conformation of these derivatives as compared with the compact native conformation. The fact that even the fully methylated RNase-A retains nearly 30% of its immunological activity suggested that the modified protein contained antibody recognizable residual native structure, which presumably accommodates some antigenic determinants.
Resumo:
Amphiphilic sugars exhibit both lyotropic and thermotropic liquid-crystalline behavior. Interestingly, in spite of the abundance of chiral centers in amphiphilic sugars, their liquid-crystalline phases do not exhibit macroscopic chirality. Herein, we report on the first observation of macroscopic chirality in sugar-based bolaamphiphiles containing free hydroxyl groups. The manifestation of the chiral smectic C* phase in these bolaamphiphiles has been observed to be critically dependent on the presence of the azobenzene moiety and the suitable length of the methylene spacer. These results imply that by suitable selection of linker groups, mesogenic bolaamphiphiles possessing macroscopic chirality can be designed using a variety of naturally available sugar derivatives.
Resumo:
Effects of non-polar, polar and proton-donating solvents on the n → π* transitions of C=O, C=S, NO2 and N=N groups have been investigated. The shifts of the absorption maxima in non-polar and polar solvents have been related to the electrostatic interactions between solute and solvent molecules, by employing the theory of McRAE. In solvents which can donate protons the solvent shifts are mainly determined by solute-solvent hydrogen bonding. Isobestic points have been found in the n → π* bonds of ethylenetrithio-carbonate in heptane-alcohol and heptane-chloroform solvent systems, indicating the existence of equilibria between the hydrogen bonded and the free species of the solute. Among the different proton-donating solvents studied water produces the largest blue-shifts. The blue-shifts in alcohols decrease in the order 2,2,2-trifluoroethanol, methanol, ethanol, isopropanol and t-butanol, the blue-shift in trifluoroethanol being nearly equal to that in water. This trend is exactly opposite to that for the self-association of alcohols. It is suggested that electron-withdrawing groups not merely decrease the extent of self-association of alcohols, but also increase the ability to donate hydrogen bonds. The approximate hydrogen-bond energies for several donor-acceptor systems have been estimated. In a series of aliphatio ketones and nitro compounds studied, the blue-shifts and consequently the hydrogen bond energies decrease with the decrease in the electron-withdrawing power of the alkyl groups. It is felt that electron-withdrawing groups render the chromophores better proton acceptors, and the alcohols better donors. A linear relationship between n → π* transition frequency and the infrared frequency of ethylenetrithiocarbonate has been found. It is concluded that stabilization of the electronic ground states of solute molecules by electrostatic and/or hydrogen-bond interactions determines the solvent shifts.
Resumo:
In social selection the phenotype of an individual depends on its own genotype as well as on the phenotypes, and so genotypes, of other individuals. This makes it impossible to associate an invariant phenotype with a genotype: the social context is crucial. Descriptions of metazoan development, which often is viewed as the acme of cooperative social behaviour, ignore or downplay this fact. The implicit justification for doing so is based on a group-selectionist point of view. Namely, embryos are clones, therefore all cells have the same evolutionary interest, and the visible differences between cells result from a common strategy. The reasoning is flawed, because phenotypic heterogeneity within groups can result from contingent choices made by cells from a flexible repertoire as in multicellular development. What makes that possible is phenotypic plasticity, namely the ability of a genotype to exhibit different phenotypes. However, co-operative social behaviour with division of labour requires that different phenotypes interact appropriately, not that they belong to the same genotype, or have overlapping genetic interests. We sketch a possible route to the evolution of social groups that involves many steps: (a) individuals that happen to be in spatial proximity benefit simply by virtue of their number; (b) traits that are already present act as preadaptations and improve the efficiency of the group; and (c) new adaptations evolve under selection in the social context-that is, via interactions between individuals-and further strengthen group behaviour. The Dictyostelid or cellular slime mould amoebae (CSMs) become multicellular in an unusual way, by the aggregation of free-living cells. In nature the resulting group can be genetically homogeneous (clonal) or heterogeneous (polyclonal); in either case its development, which displays strong cooperation between cells (to the extent of so-called altruism) is not affected. This makes the CSMs exemplars for the study of social behaviour.
Resumo:
Employing aqueous tert-butyl hydroperoxide (70%) as an inexpensive reagent a useful methodology for the regioselective and chemoselective deprotection of terminal acetonide groups in aqueous medium is developed. A variety of acetonide derivatives on reaction with aqueous tert-butyl hydroperoxide in water:tert-butanol (1:1) furnish the corresponding acetonide deprotected diols in good yields. A large number of acid labile protecting functional groups and other functional moieties were found to be unaffected under the conditions employed for the present deprotection. This method has been successfully applied to sugar derivatives.
Resumo:
We present global multidimensional numerical simulations of the plasma that pervades the dark matter haloes of clusters, groups and massive galaxies (the intracluster medium; ICM). Observations of clusters and groups imply that such haloes are roughly in global thermal equilibrium, with heating balancing cooling when averaged over sufficiently long time- and length-scales; the ICM is, however, very likely to be locally thermally unstable. Using simple observationally motivated heating prescriptions, we show that local thermal instability (TI) can produce a multiphase medium with similar to 104 K cold filaments condensing out of the hot ICM only when the ratio of the TI time-scale in the hot plasma (tTI) to the free-fall time-scale (tff) satisfies tTI/tff? 10. This criterion quantitatively explains why cold gas and star formation are preferentially observed in low-entropy clusters and groups. In addition, the interplay among heating, cooling and TI reduces the net cooling rate and the mass accretion rate at small radii by factors of similar to 100 relative to cooling-flow models. This dramatic reduction is in line with observations. The feedback efficiency required to prevent a cooling flow is similar to 10-3 for clusters and decreases for lower mass haloes; supernova heating may be energetically sufficient to balance cooling in galactic haloes. We further argue that the ICM self-adjusts so that tTI/tff? 10 at all radii. When this criterion is not satisfied, cold filaments condense out of the hot phase and reduce the density of the ICM. These cold filaments can power the black hole and/or stellar feedback required for global thermal balance, which drives tTI/tff? 10. In comparison to clusters, groups have central cores with lower densities and larger radii. This can account for the deviations from self-similarity in the X-ray luminositytemperature () relation. The high-velocity clouds observed in the Galactic halo can be due to local TI producing multiphase gas close to the virial radius if the density of the hot plasma in the Galactic halo is >rsim 10-5 cm-3 at large radii.
Resumo:
Degree of branching (DB) describes the level of structural perfection of a hyperbranched polymer when compared to its defect-free analogue, namely the dendrimer. The strategy most commonly used to achieve high DB values, specifically while using AB(2) type self-condensations, is to design an AB2 monomer wherein the reaction of the first B-group leads to an enhancement of the reactivity of the second one. In the present study, we show that an AB2 monomer carrying a dimethylacetal unit and a thiol group undergoes a rapid self-condensation in the melt under acid-catalysis to yield a hyperbranched polydithioacetal with no linear defects. NMR studies using model systems reveal that the intermediate monothioacetal is relatively unstable under the polymerization conditions and transforms rapidly to the dithioacetal; because this second step occurs irreversibly during polymer formation, it leads to a defect-free hyperbranched polydithioacetal. TGA studies of the polymerization process provided some valuable insights into the kinetics of polymerization. An additional virtue of this approach is that the numerous terminal dimethylacetal groups are very labile and can be quantitatively transformed by treatment with a variety of functional thiols; the terminal dimethylacetals were, thus, reacted with various thiols, such as dodecanethiol, benzyl mercaptan, ethylmercaptopropionate, and so on, to demonstrate the versatility of these systems as sulfur-rich hyperscaffolds to anchor different kinds of functionality on their periphery.
Resumo:
We characterise higher order Riesz transforms on the Heisenberg group and also show that they satisfy dimension-free bounds under some assumptions on the multipliers. Using transference theorems, we deduce boundedness theorems for Riesz transforms on the reduced Heisenberg group and hence also for the Riesz transforms associated to multiple Hermite and Laguerre expansions.
Resumo:
Heterophase structures in lead-free perovskite-type ferroelectric solid solutions of (1 - z)(Na0.5Bi0.5)TiO3 - zBaTiO(3) are analysed for a few critical compositions near the morphotropic phase boundary (z = 0.05-0.07). Examples of the phase coexistence and elastic matching of the phases from different symmetry groups are considered to find optimum volume fractions of specific domain types and coexisting phases at the complete stress relief in two-phase samples. Some interrelations between these volume fractions are described using variants of the domain arrangement at changes in the composition and unit-cell parameters. The evaluated room-temperature volume fractions of the ferroelectric monoclinic (Cm symmetry) and tetragonal (P4mm symmetry) phases near the morphotropic phase boundary are in agreement with experimental data.