127 resultados para FOURIER TRANSFORM INFRARED SPECTROSCOPY
em Indian Institute of Science - Bangalore - Índia
Resumo:
Fourier Transform Infrared (FTIR) spectroscopic analysis has been carried out on the hydrogenated amorphous silicon (a-Si:H) thin films deposited by DC, pulsed DC (PDC) and RF sputtering process to get insight regarding the total hydrogen concentration (C-H) in the films, configuration of hydrogen bonding, density of the films (decided by the vacancy and void incorporation) and the microstructure factor (R*) which varies with the type of sputtering carried out at the same processing conditions. The hydrogen incorporation is found to be more in RF sputter deposited films as compared to PDC and DC sputter deposited films. All the films were broadly divided into two regions namely vacancy dominated and void dominated regions. At low hydrogen dilutions the films are vacancy dominated and at high hydrogen dilutions they are void dominated. This demarcation is at C-H = 23 at.% H for RF, C-H = 18 at.% H for PDC and C-H = 14 at.% H for DC sputter deposited films. The microstructure structure factor R* is found to be as low as 0.029 for DC sputter deposited films at low C-H. For a given C-H, DC sputter deposited films have low R* as compared to PDC and RF sputter deposited films. Signature of dihydride incorporation is found to be more in DC sputter deposited films at low C-H.
Resumo:
Histone deacetylase inhibitors (HDIs) have attracted considerable attention as potential drug molecules in tumour biology. In order to optimise chemotherapy, it is important to understand the mechanisms of regulation of histone deacetylase (HDAC) enzymes and modifications brought by various HDIs. In the present study, we have employed Fourier transform infrared microspectroscopy (FT-IRMS) to evaluate modifications in cellular macromolecules subsequent to treatment with various HDIs. In addition to CH3 (methyl) stretching bands at 2872 and 2960 cm1, which arises due to acetylation, we also found major changes in bands at 2851 and 2922 cm1, which originates from stretching vibrations of CH2 (methylene) groups, in valproic acid treated cells. We further demonstrate that the changes in CH2 stretching are concentration-dependent and also induced by several other HDIs. Recently, HDIs have been shown to induce propionylation besides acetylation [1]. Since propionylation involves CH2 groups, we hypothesized that CH2 vibrational frequency changes seen in HDI treated cells could arise due to propionylation. As verification, pre-treatment of cells with propionyl CoA synthetase inhibitor resulted in loss of CH2 vibrational changes in histones, purified from valproic acid treated cells. This was further proved by western blot using propionyl-lysine specific antibody. Thus we demonstrate for the first time that propionylation could be monitored by studying CH2 stretching using IR spectroscopy and further provide a platform for monitoring HDI induced multiple changes in cells. (C) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Resumo:
Sepsis is a life threatening condition resulting from a high burden of infection. It is a major health care problem and associated with inflammation, organ dysfunction and significant mortality. However, proper understanding and delineating the changes that occur during this complex condition remains a challenge. A comparative study involving intra-peritoneal injection of BALB/c mice with Salmonella Typhimurium (infection), lipopolysaccharide (endotoxic shock) or thioglycollate (sterile peritonitis) was performed. The changes in organs and sera were profiled using immunological assays and Fourier Transform Infrared (FTIR) micro-spectroscopy. There is a rapid rise in inflammatory cytokines accompanied with lowering of temperature, respiratory rate and glucose amounts in mice injected with S. Typhimurium or lipopolysaccharide. FTIR identifies distinct changes in liver and sera: decrease in glycogen and protein/lipid ratio and increase in DNA and cholesteryl esters. These changes were distinct from the pattern observed in mice treated with thioglycollate and the differences in the data obtained between the three models are discussed. The combination of FTIR spectroscopy and other biomarkers will be valuable in monitoring molecular changes during sepsis. GRAPHICS] Intra-peritoneal infection with high dose of Salmonella Typhimurium leads to rapid increase in inflammatory cytokines, e.g. Tnf alpha (A). FTIR analysis of liver (B) and sera (C) identifies several metabolic changes: glycogen, protein/lipid, cholesteryl esters and DNA.
Resumo:
Acetaminophen is a widely prescribed drug used to relieve pain and fever; however, it is a leading cause of drug-induced liver injury and a burden on public healthcare. In this study, hepatotoxicity in mice post oral dosing of acetaminophen was investigated using liver and sera samples with Fourier Transform Infrared microspectroscopy. The infrared spectra of acetaminophen treated livers in BALB/ mice show decrease in glycogen, increase in amounts of cholesteryl esters and DNA respectively. Rescue experiments using L-methionine demonstrate that depletion in glycogen and increase in DNA are abrogated with pre-treatment, but not post-treatment, with L-methionine. This indicates that changes in glycogen and DNA are more sensitive to the rapid depletion of glutathione. Importantly, analysis of sera identified lowering of glycogen and increase in DNA and chlolesteryl esters earlier than increase in alanine aminotransferase, which is routinely used to diagnose liver damage. In addition, these changes are also observed in C57BL/6 and Nos2(-/-) mice. There is no difference in the kinetics of expression of these three molecules in both strains of mice, the extent of damage is similar and corroborated with ALT and histological analysis. Quantification of cytokines in sera showed increase upon APAP treatment. Although the levels of Tnf alpha and Ifn gamma in sera are not significantly affected, Nos2(-/-) mice display lower Il6 but higher Il10 levels during this acute model of hepatotoxicity. Overall, this study reinforces the growing potential of Fourier Transform Infrared microspectroscopy as a fast, highly sensitive and label-free technique for non-invasive diagnosis of liver damage. The combination of Fourier Transform Infrared microspectroscopy and cytokine analysis is a powerful tool to identify multiple biomarkers, understand differential host responses and evaluate therapeutic regimens during liver damage and, possibly, other diseases.
Resumo:
A strain of Thiobacillus ferrooxidans was adapted to grow at higher concentrations of copper by single step culturing in the presence of 20 g/L (0.314 mol/L) cupric ions added to 9K medium. Exposure to copper results in change in the surface chemistry of the microorganism. The isoelectric point of the adapted strain (pI=4.7) was observed to be at a higher pH than that of the wild unadapted strain(pI=2.0). Compared to the wild strain, the copper adapted strain was found to be more hydrophobic and showed enhanced attachment efficiency to the pyrite mineral. The copper adsorption ability of the adapted strain was also found to be higher than that of the wild strain. Fourier transform infrared spectroscopy of adapted cells suggested that a proteinaceous new cell surface component is synthesized by the adapted strain. Treatment of adapted cells with proteinase-K, resulted in complete loss of tolerance to copper, reduction in copper adsorption and hydrophobicity of the adapted cells. These observations strongly suggest a role played by cell surface modifications of Thiobacillus ferrooxidans in imparting the copper tolerance to the cells and bioleaching of sulphide minerals.
Resumo:
in this contribution we present a soft matter solid electrolyte which was obtained by inclusion of a polymer (polyacrylonitrile, PAN) in LiClO4/LiTFSI-succinonitrile (SN), a semi-solid organic plastic electrolyte. Addition of the polymer resulted in considerable enhancement in ionic conductivity as well as mechanical strength of LiX-SN (X=ClO4, TFSI) plastic electrolyte. Ionic conductivity of 92.5%-[1 M LiClO4-SN]:7.5%-PAN (PAN amount as per SN weight) composite at 25 degrees C recorded a remarkably high value of 7 x 10(-3) Omega(-1) cm(-1), higher by few tens of order in magnitude compared to 1 M LiClO4-SN. Composite conductivity at sub-ambient temperature is also quite high. At -20 degrees C, the ionic conductivity of (100 -x)%-[1 M LiClO4-SN]:x%-PAN composites are in the range 3 x 10(-5)-4.5 x 10(-4) Omega(-1) cm(-1), approximately one to two orders of magnitude higher with respect to 1 M LiClO4-SN electrolyte conductivity. Addition of PAN resulted in an increase of the Young's modulus (Y) from Y -> 0 for LiClO4-SN to a maximum of 0.4MPa for the composites. Microstructural studies based on X-ray diffraction, differential scanning calorimetry and Fourier transform infrared spectroscopy suggest that enhancement in composite ionic conductivity is a combined effect of decrease in crystallinity and enhanced trans conformer concentration. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Ion transport mechanism in lithium perchlorate (LiClO4)-succinonitrile (SN), a prototype of plastic crystalline soft matter electrolyte is discussed in the context of solvent configurational isomerism and ion solvation. Contributions of both solvent configurational isomerism and ion solvation are reflected in the activation energy for ion conduction in 0-1 M LiClO4-SN samples. Activation energy due to solvent configurational changes, that is, trans-gauche isomerism is observed to be a function of salt content and decreases in presence of salt (except at high salt concentrations, e.g. 1 M LiClO4-SN). The remnant contribution to activation energy is attributed to ion-association. The X-ray diffraction of single crystals obtained using in situ cryo-crystallography confirms directly the observations of the ionic conductivity measurements. Fourier transform infrared spectroscopy and NMR line width measurements provide additional support to our proposition of ion transport in the prototype plastic crystalline electrolyte.
Resumo:
Composite membranes with mordenite (MOR) incorporated in poly vinyl alcohol (PVA)–polystyrene sulfonic acid (PSSA) blend tailored with varying degree of sulfonation are reported. Such a membrane comprises a dispersed phase of mordenite and a continuous phase of the polymer that help tuning the flow of methanol and water across it. The membranes on prolonged testing in a direct methanol fuel cell (DMFC) exhibit mitigated methanol cross-over from anode to the cathode. The membranes have been tested for their sorption behaviour, ion-exchange capacity, electrochemical selectivity and mechanical strength as also characterized by Fourier transform infrared spectroscopy and thermogravimetric analysis. Water release kinetics has been measured by magnetic resonance imaging (NMR imaging) and is found to be in agreement with the sorption data. Similarly, methanol release kinetics studied by volume-localized NMR spectroscopy (point resolved spectroscopy, PRESS) clearly demonstrates that the dispersion of mordenite in PVA–PSSA retards the methanol release kinetics considerably. A peak power-density of 74 mW/cm2 is achieved for the DMFC using a PVA–PSSA membrane electrolyte with 50% degree of sulfonation and 10 wt.% dispersed mordenite phase. A methanol cross-over current as low as 7.5 mA/cm2 with 2 M methanol feed at the DMFC anode is observed while using the optimized composite membrane as electrolyte in the DMFC, which is about 60% and 46% lower than Nafion-117 and PVA–PSSA membranes, respectively, when tested under identical conditions.
Resumo:
Polymeric outdoor insulators are being increasingly used for electrical power transmission and distribution in the recent years. One of the current topics of interest for the power transmission community is the aging of such outdoor polymeric insulators. A few research groups are carrying out aging studies at room temperature with wet period as an integral part of multistress aging cycle as specified by IEC standards. However, aging effect due to dry conditions alone at elevated temperatures and electric stress in the presence of radiation environment has probably not been explored. It is interesting to study and understand the insulator performance under dry conditions where wet periods are either rare or absent and to estimate the extent of aging caused by multiple stresses. This paper deals with the long-term accelerated multistress aging on full-scale 11 kV distribution class composite silicone rubber insulators. In order to assess the long-term synergistic effect of electric stress, temperature and UV radiation on insulators, they are subjected to accelerated aging in a specially designed multistress-aging chamber for 3800 hours. All the stresses are applied at an accelerated level. Using a data acquisition system developed for the work, leakage current has been monitored in LabVIEW environment. Chemical changes due to degradations have been studied using Energy Dispersive X-Ray analysis, Scanning Electron Microscope and Fourier transform Infrared Spectroscopy. Periodically different parameters like low molecular weight (LMW) molecular content, hydrophobicity, leakage current and surface morphology were monitored. The aging study is under progress and only intermediate results are presented in this paper.
Resumo:
Calcium sulphate (CaSO4) pseudomicrorods have been synthesized by alow-temperature hydrothermal method using CaSO4 powder as a precursor and hexadecylamine as a surfactant at 180 degrees C for at different intervals of time. The powder X-ray diffraction pattern indicates that the as-formed pseudomicrorods are of orthorhombic phase with lattice parameters a = 7.0023(4) angstrom, b = 6.9939(5) angstrom and c = 6.2434(4) angstrom. Scanning electron microscopy images show that the pseudomicrorods have diameters of about 0.2-2.5 mm and lengths of about 2-10 mm. Fourier transform infrared spectroscopy shows a strong doublet near 609 and 681 cm(-1) arising from nu(4) (SO42) bending vibrations. The strongest band observed at 1132 cm(-1) is associated with nu(3) (SO42-) stretching vibrations. The band near 420-450 cm(-1) is attributed to nu(2) (SO42-) bending vibrations. The Raman spectrum exhibits an intense peak at 1008 cm(-1) associated with the SO42- mode. The photoluminescence spectrum exhibits UV bands (330, 350 nm), strong green bands (402, 436 nm) and weak blue bands (503 nm). A widening of the optical band gap was observed as the particle size decreased.
Resumo:
Single-step low-temperature solution combustion (LCS) synthesis was adopted for the preparation of LaMnO3+ (LM) nanopowders. The powders were well characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS),surface area and Fourier transform infrared spectroscopy (FTIR). The PXRD of as-formed LM showed a cubic phase but, upon calcination (900degrees C, 6 h), it transformed into a rhombohedral phase. The effect of fuel on the formation of LM was examined, and its structure and magnetoresistance properties were investigated. Magnetoresistance (MR) measurements on LM were carried out at 0, 1, 4 and 7 T between 300 and 10 K. LM (fuel-to-oxidizer ratio; = 1) showed an MR of 17% at 1 T, whereas, for 4 and 7 T, it exhibited an MR of 45 and 55%, respectively, near the TM-I. Metallic resistivity data below TM-I showed that the double exchange interaction played a major role in this compound. It was interesting to observe that the sample calcined at 1200 degrees C for 3 h exhibited insulator behavior.
Resumo:
A reversible drug delivery system based on spontaneous deposition of a model protein into preformed microcapsules has been demonstrated for protein delivery applications. Layer-by-Layer assembly of poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) onto polystyrene sulfonate (PSS) doped CaCO3 particles, followed by core removal yielded intact hollow microcapsules having a unique property to induce spontaneous deposition of bovine serum albumin (BSA) at pH below its isoelectric point of 4.8, where it was positively charged. These capsules showed reversible pH dependent open and closed states to fluorescence labeled dextran (FITC-Dextran) and BSA (FITC-BSA). The loading capacity of BSA increased from 9.1 x 10(7) to 2.03 x 10(8) molecules per capsule with decrease in pH from 4.5 to 3.The loading of BSA-FITC was observed by confocal laser scanning microscopy (CLSM), which showed homogeneous distribution of protein inside the capsule. Efficient loading of BSA was further confirmed by atomic force microscopy (AFM) and scanning electron microscopy (SEM).The interior capsule concentration was as high as 209 times the feeding concentration when the feeding concentration was increased from 1 to 10 mg/ml. The deposition was initially controlled by spontaneous loading mechanism at lower BSA concentration followed by diffusion controlled loading at higher concentration; which decreased the loading efficiency from 35% to 7%. Circular dichroism (CD) measurements and Fourier transform infrared spectroscopy (FTIR) confirmed that there was no significant change in conformation of released BSA in comparison with native BSA. The release was initially burst in the first 0.5 h and sustained up to 5 h. The hollow capsules were found to be biocompatible with mouse embryonic fibroblast (MEF) cells during in vitro cell culture studies. Thus these pH sensitive polyelectrolyte microcapsules may offer a promising delivery system for water soluble proteins and peptides. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Crystalline Bi5NbO10 nanoparticles have been achieved through a modified sol–gel process using a mixture of ethylenediamine and ethanolamine as a solvent. The Bi5NbO10 nanoparticles were characterized by X-ray diffraction (XRD), differential scanning calorimetry/thermogravimetry (DSC/TG), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and Raman spectroscopy. The results showed that well-dispersed 5–60 nm Bi5NbO10 nanoparticles were prepared through heat-treating the precursor at 650 °C and the high density pellets were obtained at temperatures lower than those commonly employed. The frequency and temperature dependence of the dielectric constant and the electrical conductivity of the Bi5NbO10 solid solutions were investigated in the 0.1 Hz to 1 MHz frequency range. Two distinct relaxation mechanisms were observed in the plots of dielectric loss and the imaginary part of impedance (Z″) versus frequency in the temperature range of 200–350 °C. The dielectric constant and the loss in the low frequency regime were electrode dependent. The ionic conductivity of Bi5NbO10 solid solutions at 700 °C is 2.86 Ω−1 m−1 which is in same order of magnitude for Y2O3-stabilized ZrO2 ceramics at same temperature. These results suggest that Bi5NbO10 is a promising material for an oxygen ion conductor.
Resumo:
Poly (3,4-ethylenedioxythiophene) (PEDOT) and poly (styrene sulphonic acid) (PSSA) supported platinum (Pt) electrodes for application in polymer electrolyte fuel cells (PEFCs) are reported. PEDOT-PSSA support helps Pt particles to be uniformly distributed on to the electrodes, and facilitates mixed electronic and ionic (H+-ion) conduction within the catalyst, ameliorating Pt utilization. The inherent proton conductivity of PEDOT-PSSA composite also helps reducing Nation content in PEFC electrodes. During prolonged operation of PEFCs, Pt electrodes supported onto PEDOT-PSSA composite exhibit lower corrosion in relation to Pt electrodes supported onto commercially available Vulcan XC-72R carbon. Physical properties of PEDOT-PSSA composite have been characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. PEFCs with PEDOT-PSSA-supported Pt catalyst electrodes offer a peak power-density of 810 mW cm(-2) at a load current-density of 1800 mA cm(-2) with Nation content as low as 5 wt.% in the catalyst layer. Accordingly, the present study provides a novel alternative support for platinized PEFC electrodes.
Resumo:
Poly (3,4-ethylenedioxythiophene) (PEDOT) and poly (styrene sulphonic acid) (PSSA) supported platinum (Pt) electrodes for application in polymer electrolyte fuel cells (PEFCs) are reported. PEDOT-PSSA support helps Pt particles to be uniformly distributed on to the electrodes, and facilitates mixed electronic and ionic (H+-ion) conduction within the catalyst, ameliorating Pt utilization. The inherent proton conductivity of PEDOT-PSSA composite also helps reducing Nation content in PEFC electrodes. During prolonged operation of PEFCs, Pt electrodes supported onto PEDOT-PSSA composite exhibit lower corrosion in relation to Pt electrodes supported onto commercially available Vulcan XC-72R carbon. Physical properties of PEDOT-PSSA composite have been characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. PEFCs with PEDOT-PSSA-supported Pt catalyst electrodes offer a peak power-density of 810 mW cm(-2) at a load current-density of 1800 mA cm(-2) with Nation content as low as 5 wt.% in the catalyst layer. Accordingly, the present study provides a novel alternative support for platinized PEFC electrodes