107 resultados para FLOW MATHEMATICAL-MODEL

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A mathematical model for pulsatile flow in a partially occluded tube is presented. The problem has applications in studying the effects of blood flow characteristics on atherosclerotic development. The model brings out the importance of the pulsatility of blood flow on separation and the stress distribution. The results obtained show fairly good agreement with the available experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Closed-form solutions are presented for approximate equations governing the pulsatile flow of blood through models of mild axisymmetric arterial stenosis, taking into account the effect of arterial distensibility. Results indicate the existence of back-flow regions and the phenomenon of flow-reversal in the cross-sections. The effects of pulsatility of flow and elasticity of vessel wall for arterial blood flow through stenosed vessels are determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A mathematical model has been developed for predicting the performance of rotating arcs in SF6 gas by considering the energy balance and force balance equations. The finite difference technique has been adopted for the computer simulation of the arc characteristics. This method helps in considering the spatial variation of the transport and radiative properties of the arc. All the three heat loss mechanisms-conduction, convection, and radiation-have been considered. Results obtained over a 10 ms (half cycle of 50 Hz wave) current flow period for 1.4 kA (peak) and 4.2 kA (peak), show that the proposed arc model gives the expected behavior of the arc over the range of currents studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A three-dimensional mathematical model has been developed to simulate the gas flow, composition, and temperature profiles inside a cupola. Comparison of the model with the reported experimental data shows the presence of a zone with low combustion rate at the tuyere level. For a 24 in (610 mm) cupola with four rows of tuyeres, the combustion zones from each tuyere overlap each other, forming an overall combustion zone of cylindrical shape of height similar to 0.2 m. Using the model, it is found that the spout temperature initially increases with increasing blast velocity and attains a maximum. Further increase in blast velocity does not change the spout temperature. This suggests that smaller size tuyeres and higher permeability of the bed can give superior cupola performance. (C) 1997 The Institute of Materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Discharge periods of lead-acid batteries are significantly reduced at subzero centigrade temperatures. The reduction is more than what can he expected due to decreased rates of various processes caused by a lowering of temperature and occurs despite the fact that active materials are available for discharge. It is proposed that the major cause for this is the freezing of the electrolyte. The concentration of acid decreases during battery discharge with a consequent increase in the freezing temperature. A battery freezes when the discharge temperature falls below the freezing temperature. A mathematical model is developed for conditions where charge-transfer reaction is the rate-limiting step. and Tafel kinetics are applicable. It is argued that freezing begins from the midplanes of electrodes and proceeds toward the reservoir in-between. Ionic conduction stops when one of the electrodes freezes fully and the time taken to reach that point, namely the discharge period, is calculated. The predictions of the model compare well to observations made at low current density (C/5) and at -20 and -40 degrees C. At higher current densities, however, diffusional resistances become important and a more complicated moving boundary problem needs to be solved to predict the discharge periods. (C) 2009 The Electrochemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a comparative population dynamics study of three closely related species of buttercups (Ranunculus repens, R. acris, and R. bulbosus). The study is based on an investigation of the behaviour of the seeds in soil under field conditions and a continuous monitoring of survival and reproduction of some 9000 individual plants over a period of 21/2 years in a coastal grassland in North Wales. The data were analysed with the help of an extension of Leslie's matrix method which makes possible an simultaneous treatment of vegetative and sexual reproduction. It was found that R. repens (a) depends more heavily on vegetative as compared with sexual reproduction, (b) shows indications of negatively density-dependent population regulation, and (c) exhibits little variation in population growth rates from site to site and from one year to the next. In contrast, R. bulbosus (a) depends exclusively on sexual reproduction, (b) shows indications of a positively density-dependent population behaviour, and (c) exhibits great variation in population growth rates from site to site and from one year to the next. R. acris exhibits an intermediate behaviour in all these respects. It is suggested that the attributes of R. repens are those expected of a species inhabiting a stable environment, while R. bulbosus exhibits some of the characteristics of a fugitive species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, pattern classification problem in tool wear monitoring is solved using nature inspired techniques such as Genetic Programming(GP) and Ant-Miner (AM). The main advantage of GP and AM is their ability to learn the underlying data relationships and express them in the form of mathematical equation or simple rules. The extraction of knowledge from the training data set using GP and AM are in the form of Genetic Programming Classifier Expression (GPCE) and rules respectively. The GPCE and AM extracted rules are then applied to set of data in the testing/validation set to obtain the classification accuracy. A major attraction in GP evolved GPCE and AM based classification is the possibility of obtaining an expert system like rules that can be directly applied subsequently by the user in his/her application. The performance of the data classification using GP and AM is as good as the classification accuracy obtained in the earlier study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nevirapine forms the mainstay of our efforts to curtail the pediatric AIDS epidemic through prevention of mother-to-child transmission of HIV-1. A key limitation, however, is the rapid selection of HIV-1 strains resistant to nevirapine following the administration of a single dose. This rapid selection of resistance suggests that nevirapine-resistant strains preexist in HIV-1 patients and may adversely affect outcomes of treatment. The frequencies of nevirapine-resistant strains in vivo, however, remain poorly estimated, possibly because they exist as a minority below current assay detection limits. Here, we employ stochastic simulations and a mathematical model to estimate the frequencies of strains carrying different combinations of the common nevirapine resistance mutations K103N, V106A, Y181C, Y188C, and G190A in chronically infected HIV-1 patients naive to nevirapine. We estimate the relative fitness of mutant strains from an independent analysis of previous competitive growth assays. We predict that single mutants are likely to preexist in patients at frequencies (similar to 0.01% to 0.001%) near or below current assay detection limits (>0.01%), emphasizing the need for more-sensitive assays. The existence of double mutants is subject to large stochastic variations. Triple and higher mutants are predicted not to exist. Our estimates are robust to variations in the recombination rate, cellular superinfection frequency, and the effective population size. Thus, with 10(7) to 10(8) infected cells in HIV-1 patients, even when undetected, nevirapine-resistant genomes may exist in substantial numbers and compromise efforts to prevent mother-to-child transmission of HIV-1, accelerate the failure of subsequent antiretroviral treatments, and facilitate the transmission of drug resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiac arrhythmias, such as ventricular tachycardia (VT) and ventricular fibrillation (VF), are among the leading causes of death in the industrialized world. These are associated with the formation of spiral and scroll waves of electrical activation in cardiac tissue; single spiral and scroll waves are believed to be associated with VT whereas their turbulent analogs are associated with VF. Thus, the study of these waves is an important biophysical problem. We present a systematic study of the combined effects of muscle-fiber rotation and inhomogeneities on scroll-wave dynamics in the TNNP (ten Tusscher Noble Noble Panfilov) model for human cardiac tissue. In particular, we use the three-dimensional TNNP model with fiber rotation and consider both conduction and ionic inhomogeneities. We find that, in addition to displaying a sensitive dependence on the positions, sizes, and types of inhomogeneities, scroll-wave dynamics also depends delicately upon the degree of fiber rotation. We find that the tendency of scroll waves to anchor to cylindrical conduction inhomogeneities increases with the radius of the inhomogeneity. Furthermore, the filament of the scroll wave can exhibit drift or meandering, transmural bending, twisting, and break-up. If the scroll-wave filament exhibits weak meandering, then there is a fine balance between the anchoring of this wave at the inhomogeneity and a disruption of wave-pinning by fiber rotation. If this filament displays strong meandering, then again the anchoring is suppressed by fiber rotation; also, the scroll wave can be eliminated from most of the layers only to be regenerated by a seed wave. Ionic inhomogeneities can also lead to an anchoring of the scroll wave; scroll waves can now enter the region inside an ionic inhomogeneity and can display a coexistence of spatiotemporal chaos and quasi-periodic behavior in different parts of the simulation domain. We discuss the experimental implications of our study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A dynamic model of the COREX melter gasifier is developed to study the transient behavior of the furnace. The effect of pulse disturbance and step disturbance on the process performance has been studied. This study shows that the effect of pulse disturbance decays asymptotically. The step change brings the system to a new steady state after a delay of about 5 hours. The dynamic behavior of the melter gasifier with respect to a shutdown/blow-on condition and the effect of tapping are also studied. The results show that the time response of the melter gasifier is much less than that of a blast furnace.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The COREX melter gasifier is a countercurrent reactor to produce liquid iron. Directly reduced iron (DRI), noncoking coal, and other additives are charged to the melter gasifier at their respective temperatures, and O-2 is blown through the tuyeres. Functionally, a melter gasifier is divided into three zones: a moving bed, fluidized bed, and free board. A model has been developed for the moving bed, where the tuyere region is two-dimensional (2-D) and the rest is one-dimensional (1-D). It is based on multiphase conservation of mass, momentum, and heat. The fluidized bed has been treated as 1-D. Partial equilibrium is calculated for the free board. The calculated temperature of the hot metal, the top gas, and the chemistry of the top gas agree with the reported plant data. The model has been used to study the effects of bed height, injection of impure O-2, coal chemistry, and reactivity on the process performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interaction between the hepatitis C virus (HCV) envelope protein E2 and the host receptor CD81 is essential for HCV entry into target cells. The number of E2-CD81 complexes necessary for HCV entry has remained difficult to estimate experimentally. Using the recently developed cell culture systems that allow persistent HCV infection in vitro, the dependence of HCV entry and kinetics on CD81 expression has been measured. We reasoned that analysis of the latter experiments using a mathematical model of viral kinetics may yield estimates of the number of E2-CD81 complexes necessary for HCV entry. Here, we constructed a mathematical model of HCV viral kinetics in vitro, in which we accounted explicitly for the dependence of HCV entry on CD81 expression. Model predictions of viral kinetics are in quantitative agreement with experimental observations. Specifically, our model predicts triphasic viral kinetics in vitro, where the first phase is characterized by cell proliferation, the second by the infection of susceptible cells and the third by the growth of cells refractory to infection. By fitting model predictions to the above data, we were able to estimate the threshold number of E2-CD81 complexes necessary for HCV entry into human hepatoma-derived cells. We found that depending on the E2-CD81 binding affinity, between 1 and 13 E2-CD81 complexes are necessary for HCV entry. With this estimate, our model captured data from independent experiments that employed different HCV clones and cells with distinct CD81 expression levels, indicating that the estimate is robust. Our study thus quantifies the molecular requirements of HCV entry and suggests guidelines for intervention strategies that target the E2-CD81 interaction. Further, our model presents a framework for quantitative analyses of cell culture studies now extensively employed to investigate HCV infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a comprehensive numerical study of spiral-and scroll-wave dynamics in a state-of-the-art mathematical model for human ventricular tissue with fiber rotation, transmural heterogeneity, myocytes, and fibroblasts. Our mathematical model introduces fibroblasts randomly, to mimic diffuse fibrosis, in the ten Tusscher-Noble-Noble-Panfilov (TNNP) model for human ventricular tissue; the passive fibroblasts in our model do not exhibit an action potential in the absence of coupling with myocytes; and we allow for a coupling between nearby myocytes and fibroblasts. Our study of a single myocyte-fibroblast (MF) composite, with a single myocyte coupled to N-f fibroblasts via a gap-junctional conductance G(gap), reveals five qualitatively different responses for this composite. Our investigations of two-dimensional domains with a random distribution of fibroblasts in a myocyte background reveal that, as the percentage P-f of fibroblasts increases, the conduction velocity of a plane wave decreases until there is conduction failure. If we consider spiral-wave dynamics in such a medium we find, in two dimensions, a variety of nonequilibrium states, temporally periodic, quasiperiodic, chaotic, and quiescent, and an intricate sequence of transitions between them; we also study the analogous sequence of transitions for three-dimensional scroll waves in a three-dimensional version of our mathematical model that includes both fiber rotation and transmural heterogeneity. We thus elucidate random-fibrosis-induced nonequilibrium transitions, which lead to conduction block for spiral waves in two dimensions and scroll waves in three dimensions. We explore possible experimental implications of our mathematical and numerical studies for plane-, spiral-, and scroll-wave dynamics in cardiac tissue with fibrosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiac fibroblasts, when coupled functionally with myocytes, can modulate the electrophysiological properties of cardiac tissue. We present systematic numerical studies of such modulation of electrophysiological properties in mathematical models for (a) single myocyte-fibroblast (MF) units and (b) two-dimensional (2D) arrays of such units; our models build on earlier ones and allow for zero-, one-, and two-sided MF couplings. Our studies of MF units elucidate the dependence of the action-potential (AP) morphology on parameters such as E-f, the fibroblast resting-membrane potential, the fibroblast conductance G(f), and the MF gap-junctional coupling G(gap). Furthermore, we find that our MF composite can show autorhythmic and oscillatory behaviors in addition to an excitable response. Our 2D studies use (a) both homogeneous and inhomogeneous distributions of fibroblasts, (b) various ranges for parameters such as G(gap), G(f), and E-f, and (c) intercellular couplings that can be zero-sided, one-sided, and two-sided connections of fibroblasts with myocytes. We show, in particular, that the plane-wave conduction velocity CV decreases as a function of G(gap), for zero-sided and one-sided couplings; however, for two-sided coupling, CV decreases initially and then increases as a function of G(gap), and, eventually, we observe that conduction failure occurs for low values of G(gap). In our homogeneous studies, we find that the rotation speed and stability of a spiral wave can be controlled either by controlling G(gap) or E-f. Our studies with fibroblast inhomogeneities show that a spiral wave can get anchored to a local fibroblast inhomogeneity. We also study the efficacy of a low-amplitude control scheme, which has been suggested for the control of spiral-wave turbulence in mathematical models for cardiac tissue, in our MF model both with and without heterogeneities.