283 resultados para FINITE-AMPLITUDE BANKS
em Indian Institute of Science - Bangalore - Índia
Resumo:
Existence of a periodic progressive wave solution to the nonlinear boundary value problem for Rayleigh surface waves of finite amplitude is demonstrated using an extension of the method of strained coordinates. The solution, obtained as a second-order perturbation of the linearized monochromatic Rayleigh wave solution, contains harmonics of all orders of the fundamental frequency. It is shown that the higher harmonic content of the wave increases with amplitude, but the slope of the waveform remains finite so long as the amplitude is less than a critical value.
Resumo:
A technique for obtaining a uniformly valid solution to the problem of nonlinear propagation of surface acoustic waves excited by a monochromatic line source is presented. The method of solution is an extension of the method of strained coordinates wherein both the dependent and independent variables are expanded in perturbation series. A special transformation is proposed for the independent variables so as to make the expansions uniformly valid and also to satisfy all the boundary conditions. This perturbation procedure, carried out to the second order, yields a solution containing a second harmonic surface wave whose amplitude and phase exhibit an oscillatory variation along the direction of propagation. In addition, the solution also contains a second harmonic bulk wave of constant amplitude but varying phase propagating into the medium.
Resumo:
Existence of a periodic progressive wave solution to the nonlinear boundary value problem for Rayleigh surface waves of finite amplitude is demonstrated using an extension of the method of strained coordinates. The solution, obtained as a second-order perturbation of the linearized monochromatic Rayleigh wave solution, contains harmonics of all orders of the fundamental frequency. It is shown that the higher harmonic content of the wave increases with amplitude, but the slope of the waveform remains finite so long as the amplitude is less than a critical value.
Resumo:
A pair of semi-linear hyperbolic partial differential equations governing the slow variations in amplitude and phase of a quasi-monochromatic finite-amplitude Love-wave on an isotropic layered half-space is derived using the method of multiple-scales. The analysis of the exact solution of these equations for a signalling problem reveals that the amplitude of the wave remains constant along its characteristic and that the phase of the wave increases linearly behind the wave-front.
Resumo:
The problem of homogeneous solid propellant combustion instability is studied with a one-dimensional flame model, including the effects of gas-phase thermal inertia and nonlinearity. Computational results presented in this paper show nonlinear instabilities inherent in the equations, due to which periodic burning is found even under steady ambient conditions such as pressure. The stability boundary is obtained in terms of Denison-Baum parameters. It is found that inclusion of gas-phase thermal inertia stabilizes the combustion. Also, the effect of a distributed heat release in the gas phase, compared to the flame sheet model, is to destabilize the burning. Direct calculations for finite amplitude pressure disturbances show that two distinct resonant modes exist, the first one near the natural frequency as obtained from intrinsic instability analysis and a second mode occurring at a much higher driving frequency. It is found that er rn in the low frequency region, the response of the propellant is significantly affected by the specific type of gas-phase chemical heat-release model employed. Examination of frequency response function reveals that the role of gas-phase thermal inertia is to stabilize the burning near the first resonant mode. Calculations made for different amplitudes of driving pressure show that the mean burning rate decreases with increasing amplitude. Also, with an increase in the driving amplitude, higher harmonics are generated in the burning rate.
Weakly nonlinear acoustic wave propagation in a nonlinear orthotropic circular cylindrical waveguide
Resumo:
Nonlinear acoustic wave propagation is considered in an infinite orthotropic thin circular cylindrical waveguide. The modes are non-planar having small but finite amplitude. The fluid is assumed to be ideal and inviscid with no mean flow. The cylindrical waveguide is modeled using the Donnell's nonlinear theory for thin cylindrical shells. The approximate solutions for the acoustic velocity potential are found using the method of multiple scales (MMS) in space and time. The calculations are presented up to the third order of the small parameter. It is found that at some frequencies the amplitude modulation is governed by the Nonlinear Schrodinger Equation (NLSE). The first objective is to study the nonlinear term in the NLSE, as the sign of the nonlinear term determines the stability of the amplitude modulation. On the other hand, at other specific frequencies, interactions occur between the primary wave and its higher harmonics. Here, the objective is to identify the frequencies of the higher harmonic interactions. Lastly, the linear terms in the NLSE obtained using the MMS calculations are validated. All three objectives are met using an asymptotic analysis of the dispersion equation. (C) 2015 Acoustical Society of America.
Resumo:
The matched filter method for detecting a periodic structure on a surface hidden behind randomness is known to detect up to (r(0)/Lambda) gt;= 0.11, where r(0) is the coherence length of light on scattering from the rough part and 3 is the wavelength of the periodic part of the surface-the above limit being much lower than what is allowed by conventional detection methods. The primary goal of this technique is the detection and characterization of the periodic structure hidden behind randomness without the use of any complicated experimental or computational procedures. This paper examines this detection procedure for various values of the amplitude a of the periodic part beginning from a = 0 to small finite values of a. We thus address the importance of the following quantities: `(a)lambda) `, which scales the amplitude of the periodic part with the wavelength of light, and (r(0))Lambda),in determining the detectability of the intensity peaks.
Resumo:
We study charge pumping when a combination of static potentials and potentials oscillating with a time period T is applied in a one-dimensional system of noninteracting electrons. We consider both an infinite system using the Dirac equation in the continuum approximation and a periodic ring with a finite number of sites using the tight-binding model. The infinite system is taken to be coupled to reservoirs on the two sides which are at the same chemical potential and temperature. We consider a model in which oscillating potentials help the electrons to access a transmission resonance produced by the static potentials and show that nonadiabatic pumping violates the simple sin phi rule which is obeyed by adiabatic two-site pumping. For the ring, we do not introduce any reservoirs, and we present a method for calculating the current averaged over an infinite time using the time evolution operator U(T) assuming a purely Hamiltonian evolution. We analytically show that the averaged current is zero if the Hamiltonian is real and time-reversal invariant. Numerical studies indicate another interesting result, namely, that the integrated current is zero for any time dependence of the potential if it is applied to only one site. Finally we study the effects of pumping at two sites on a ring at resonant and nonresonant frequencies, and show that the pumped current has different dependences on the pumping amplitude in the two cases.
Resumo:
A geometrically non-linear Spectral Finite Flement Model (SFEM) including hysteresis, internal friction and viscous dissipation in the material is developed and is used to study non-linear dissipative wave propagation in elementary rod under high amplitude pulse loading. The solution to non-linear dispersive dissipative equation constitutes one of the most difficult problems in contemporary mathematical physics. Although intensive research towards analytical developments are on, a general purpose cumputational discretization technique for complex applications, such as finite element, but with all the features of travelling wave (TW) solutions is not available. The present effort is aimed towards development of such computational framework. Fast Fourier Transform (FFT) is used for transformation between temporal and frequency domain. SFEM for the associated linear system is used as initial state for vector iteration. General purpose procedure involving matrix computation and frequency domain convolution operators are used and implemented in a finite element code. Convergnence of the spectral residual force vector ensures the solution accuracy. Important conclusions are drawn from the numerical simulations. Future course of developments are highlighted.
Resumo:
Standard approaches for ellipse fitting are based on the minimization of algebraic or geometric distance between the given data and a template ellipse. When the data are noisy and come from a partial ellipse, the state-of-the-art methods tend to produce biased ellipses. We rely on the sampling structure of the underlying signal and show that the x- and y-coordinate functions of an ellipse are finite-rate-of-innovation (FRI) signals, and that their parameters are estimable from partial data. We consider both uniform and nonuniform sampling scenarios in the presence of noise and show that the data can be modeled as a sum of random amplitude-modulated complex exponentials. A low-pass filter is used to suppress noise and approximate the data as a sum of weighted complex exponentials. The annihilating filter used in FRI approaches is applied to estimate the sampling interval in the closed form. We perform experiments on simulated and real data, and assess both objective and subjective performances in comparison with the state-of-the-art ellipse fitting methods. The proposed method produces ellipses with lesser bias. Furthermore, the mean-squared error is lesser by about 2 to 10 dB. We show the applications of ellipse fitting in iris images starting from partial edge contours, and to free-hand ellipses drawn on a touch-screen tablet.
Resumo:
A plane strain elastic interaction analysis of a strip footing resting on a reinforced soil bed has been made by using a combined analytical and finite element method (FEM). In this approach the stiffness matrix for the footing has been obtained using the FEM, For the reinforced soil bed (halfplane) the stiffness matrix has been obtained using an analytical solution. For the latter, the reinforced zone has been idealised as (i) an equivalent orthotropic infinite strip (composite approach) and (ii) a multilayered system (discrete approach). In the analysis, the interface between the strip footing and reinforced halfplane has been assumed as (i) frictionless and (ii) fully bonded. The contact pressure distribution and the settlement reduction have been given for different depths of footing and scheme of reinforcement in soil. The load-deformation behaviour of the reinforced soil obtained using the above modelling has been compared with some available analytical and model test results. The equivalent orthotropic approach proposed in this paper is easy to program and is shown to predict the reinforcing effects reasonably well.
Resumo:
We present a generalization of the finite volume evolution Galerkin scheme [M. Lukacova-Medvid'ova,J. Saibertov'a, G. Warnecke, Finite volume evolution Galerkin methods for nonlinear hyperbolic systems, J. Comp. Phys. (2002) 183 533-562; M. Luacova-Medvid'ova, K.W. Morton, G. Warnecke, Finite volume evolution Galerkin (FVEG) methods for hyperbolic problems, SIAM J. Sci. Comput. (2004) 26 1-30] for hyperbolic systems with spatially varying flux functions. Our goal is to develop a genuinely multi-dimensional numerical scheme for wave propagation problems in a heterogeneous media. We illustrate our methodology for acoustic waves in a heterogeneous medium but the results can be generalized to more complex systems. The finite volume evolution Galerkin (FVEG) method is a predictor-corrector method combining the finite volume corrector step with the evolutionary predictor step. In order to evolve fluxes along the cell interfaces we use multi-dimensional approximate evolution operator. The latter is constructed using the theory of bicharacteristics under the assumption of spatially dependent wave speeds. To approximate heterogeneous medium a staggered grid approach is used. Several numerical experiments for wave propagation with continuous as well as discontinuous wave speeds confirm the robustness and reliability of the new FVEG scheme.
Resumo:
Lasers are very efficient in heating localized regions and hence they find a wide application in surface treatment processes. The surface of a material can be selectively modified to give superior wear and corrosion resistance. In laser surface-melting and welding problems, the high temperature gradient prevailing in the free surface induces a surface-tension gradient which is the dominant driving force for convection (known as thermo-capillary or Marangoni convection). It has been reported that the surface-tension driven convection plays a dominant role in determining the melt pool shape. In most of the earlier works on laser-melting and related problems, the finite difference method (FDM) has been used to solve the Navier Stokes equations [1]. Since the Reynolds number is quite high in these cases, upwinding has been used. Though upwinding gives physically realistic solutions even on a coarse grid, the results are inaccurate. McLay and Carey have solved the thermo-capillary flow in welding problems by an implicit finite element method [2]. They used the conventional Galerkin finite element method (FEM) which requires that the pressure be interpolated by one order lower than velocity (mixed interpolation). This restricts the choice of elements to certain higher order elements which need numerical integration for evaluation of element matrices. The implicit algorithm yields a system of nonlinear, unsymmetric equations which are not positive definite. Computations would be possible only with large mainframe computers.Sluzalec [3] has modeled the pulsed laser-melting problem by an explicit method (FEM). He has used the six-node triangular element with mixed interpolation. Since he has considered the buoyancy induced flow only, the velocity values are small. In the present work, an equal order explicit FEM is used to compute the thermo-capillary flow in the laser surface-melting problem. As this method permits equal order interpolation, there is no restriction in the choice of elements. Even linear elements such as the three-node triangular elements can be used. As the governing equations are solved in a sequential manner, the computer memory requirement is less. The finite element formulation is discussed in this paper along with typical numerical results.
Resumo:
The details of development of the stiffness matrix for a doubly curved quadrilateral element suited for static and dynamic analysis of laminated anisotropic thin shells of revolution are reported. Expressing the assumed displacement state over the middle surface of the shell as products of one-dimensional first order Hermite polynomials, it is possible to ensure that the displacement state for the assembled set of such elements, is geometrically admissible. Monotonic convergence of total potential energy is therefore possible as the modelling is successively refined. Systematic evaluation of performance of the element is conducted, considering various examples for which analytical or other solutions are available.
Resumo:
The paper presents the results of an experimental study regarding the effect of the lateral dimension of the receiving water on the spreading, mixing, and temperature decay of a horizontal buoyant surface jet. The widths of the ambient water in the experiments have been 240, 120, 90 and 60 times the diameter of the jet nozzle. Based on the experimental data, correlations are carried out and empirical equations for prediction of jet width, thickness in vertical direction and longitudinal temperature decay are obtained. The available data of earlier investigators are included to obtain generalized equations for the spreading and temperature decay. Similarity of temperature profiles in the lateral and vertical directions is observed. The longitudinal temperature decay is found to vary inversely with distance in the flow direction and ¼th power of the densimetric Froude number.