218 resultados para FENTON REACTION

em Indian Institute of Science - Bangalore - Índia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oxidative stress due to excessive accumulation of reactive oxygen or nitrogen species in the brain as seen in certain neurodegenerative diseases can have deleterious effects on neurons. Hydrogen peroxide, endogenously generated in neurons under normal physiological conditions, can produce an excess of hydroxyl radical via a Fenton mediated mechanism. This may induce acute oxidative injury if not scavenged or removed effectively by antioxidants. There are several biochemical assay methods to estimate oxidative injury in cells; however, they do not provide information on the biochemical changes as the cells get damaged progressively under oxidative stress. Raman microspectroscopy offers the possibility of real time monitoring of the chemical composition of live cells undergoing oxidative stress under physiological conditions. In the present study, a hippocampal neuron coculture was used to observe the acute impact of hydroxyl radicals generated by hydrogen peroxide in the presence of Fe2+ (Fenton reaction). Raman peaks related to nucleic acids (725, 782, 1092, 1320, 1340, 1420, and 1576 cm(-1)) showed time-dependent changes over the experimental period (60 mm), indicating the breakdown of the phosphodiester backbone as well as nuclear bases. Interestingly, ascorbic acid (a potent antioxidant) when cotreated with Fenton reactants showed protection of cells as inferred from the Raman spectra, presumably by scavenging hydroxyl radicals. Little or no change in the Raman spectra was observed for untreated control cells and for cells exposed to Fe2+ only, H2O2 only, and ascorbate only. A live dead assay study also supported the current observations. Hence, Raman microspectroscopy has the potential to be an excellent noninvasive tool for early detection of oxidative stress that is seen in neurodegenerative diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Treatment of bromoketals 2, derived from allyl alcohols 1, with tributyltin chloride, sodium cyanoborohydride and AIBN furnishes the tetrahydrofurannulated products 3 via a 5-exo-trig radical cyclisation reaction followed by reductive cleavage of ketal 4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peroxidative bromination of phenol red to its tetrabromo derivative, bromophenol blue, required vanadate in addition to H2O2 when carried out in the pH range of 5-7. Excess H2O2, with ratio of H2O2:vanadate of 2:1 and above, prevented the reaction. Diperoxovanadate, known to be formed in such reaction mixtures, was ineffective by itself and needed uncomplexed vanadate (V-v) or vanadyl (V-iv) to support bromination. Bromide-assisted reduction of the excess vanadate to vanadyl appeared to be an essential secondary reaction. In the absence of phenol red oxygen was released, and concomitantly bromide was oxidized to a form competent to brominate phenol red added after termination of oxygen release. These findings indicated participation of reactions leading to an intermediate derived from vanadyl and diperoxovanadate, previously described from this laboratory (Arch. Biochem. Biophys. 316, 319-326, 1995). Continuous bromination of phenol red occurred when glucose oxidase-glucose system was used as a source of continuous flow of H2O2. A scheme of reactions involving peroxovanadates (mono-, di-, mu-, and bromo-) is proposed for the formation and utilization of an active brominating species and for the recycling of the product, mono-peroxovanadate, by H2O2, which explains the catalytic role of vanadium in the bromoperoxidation reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoporous structures with high active surface areas are critical for a variety of applications. Here, we present a general templateless strategy to produce such porous structures by controlled aggregation of nanostructured subunits and apply the principles for synthesizing nanoporous Pt for electrocatalytic oxidation of methanol. The nature of the aggregate produced is controlled by tuning the electrostatic interaction between surfactant-free nanoparticles in the solution phase. When the repulsive force between the particles is very large, the particles are stabilized in the solution while instantaneous aggregation leading to fractal-like structures results when the repulsive force is very low. Controlling the repulsive interaction to an optimum, intermediate value results in the formation of compact structures with very large surface areas. In the case of Pt, nanoporous clusters with an extremely high specific surface area (39 m(2)/g) and high activity for methanol oxidation have been produced. Preliminary investigations indicate that the method is general and can be easily extended to produce nanoporous structures of many inorganic materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enantiospecific synthesis of the tricyclic core structure present in the biologically active natural products tricycloillicinone, ialibinones, and takaneones, starting from the readily available campholenaldehyde employing a transannular RCM reaction as the key step, has been accomplished.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reaction of the title compound (1a) with anhydrous MeOH-HCl gave 2-endo-(2,6-dimethoxyphenyl)-2-exo-methyl-5-methylbicyclo[3.2.1]octane-6,8-dione (3a), 1,5,14-timethoxy-5,8-seco-6,7-dinorestra-1,3,5(10),9(11)-tetraen-17-one (4), 1,5-dimethoxy-5,8-seco-6,7-dinorestra-1,3,5(10),8,14-pentaen-17-one (5), and 3,4,5,6-tetrahydro-2,7-dimethoxy-3,6-dimethyl-3,2,6-(13-oxopropan[1]yI[3]ylidene)-2H-1-benzoxocin (6). Structures assigned to compounds (3a), (4), and (6) are based on spectral data. The exo-tricyclic acetal structure (6) was further confirmed by the analysis of the 1H n.m.r. spectra of the isomeric alcohols (11) and (12), obtained by sodium borohydride reduction of (6).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vilsmeier reaction on a few representative 6- and 7-methoxy-1- and 2-tetralones has been investigated. While 1-tetralones give the corresponding 1-chloro-2-formyl3, 4-dihydronaphthalenes, the 2-tetralones afford 1,3-bisformyl-2-chloronaphthalenes. Spectral characteristics of all the products obtained are given and a mechanistic proposal has been made to explain the observed chlorobisformylation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene-nanocrystalline metal sulphide composites were prepared by a one-pot reaction. A dispersion of graphite oxide layers in an aqueous solution of metal ions (Cd2+/Zn2+) was reacted with H2S gas, which acts as a sulphide source as well as a reducing agent, resulting in the formation of metal sulphide nanoparticles and simultaneous reduction of graphite oxide sheets to graphene sheets. The surface defect related emissions shown by free metal sulphide particles are quenched in the composites due to the interaction of the surface of the nanoparticles with graphene sheets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract is not available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-resolved resonance Raman spectroscopy (TR3) has been used to study the effect of solvent polarity on the mechanism and nature of intermediates formed in photoinduced electron-transfer reaction between triplet flouranil ((FL)-F-3) and tetramethylbenzene (TMB). Comparison of the TR3 spectra in polar, nonpolar, and medium polar media suggests that formation of radical anion due to electron-transfer reaction between (FL)-F-3 and TMB is favored in more polar solvents, whereas ketyl radical formation is more favored in less polar media. Compared to ketyl radical, the extent of radical anion formation is negligible in nonpolar solvents. Therefore, it is inferred that in nonpolar media ketyl radical is mainly generated by hydrogen-transfer reaction in the encounter complex between (FL)-F-3 and TMB. In solvents of medium polarity, the ion-pair decay leads to the formation of both ketyl radical and ketyl radical formed from the encounter between triplet state and the donor. Thus, competition between the formation of ketyl radical and ion pair is influenced by the solvent polarity. The nature of the ion pair in different solvent polarity has been investigated from the changes observed in the vibrational frequency of (fluoranil) FL part of the complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The water-gas shift reaction (WGS) is an important reaction to produce hydrogen. In this study, we have synthesized nanosized catalysts where Pt ion is substituted in the +2 state in TiO2, CeO2, and Ce1-xTixO2-delta. These catalysts have been characterized by X-ray diffraction and X-ray photoelectron spectroscopy (XPS), and it has been shown that Pt2+ in these reducible oxides result in solid solutions like Ti0.99Pt0.01O2-delta, Ce0.8Ti0.15Pt0.02O2-delta, and Ce0.98Pt0.02O2-delta. These catalysts were tested for the water gas shift reaction both ill the presence and absence of hydrogen. It was shown that Ti0.99Pt0.01O2-delta exhibited higher catalytic activity than Ce0.83Ti0.15Pt0.02O2-delta and Ce0.98Pt0.02O2-delta. Further, experiments were conducted to determine the deactivation of these catalysts. There was no sintering of Pt and no carbonate formation; therefore, the catalyst did not deactivate even after prolonged reaction. There was no carbonate formation because of the highly acidic nature of Ti4+ ions in the catalysts.