7 resultados para Ezra Pound
em Indian Institute of Science - Bangalore - Índia
Resumo:
A number of macroporous metal oxide foams were prepared through self-sustained combustion reactions starting from dough made of the corresponding metal nitrate, urea and starch. The nitrate ion acts as an oxidizing agent, urea as fuel and starch as an organic binder. The metal oxide foams are characterized by scanning electron microscopy and powder X-ray diffraction.
Resumo:
Molecular oxygen (012) i8 eatabliehed to be a good electrophile' and haabean Pound to yield many interesting moleculae upon reaction with olefinic, aromatic and other mu1 tipla bonded compounda. Although, oxidation of carbon ulphur double bond (thiones) by air her bean know for a longtime, nai the r the aechaniam nor the reactive species involved in theae oxidationa have bean etabliahodo Although there is no clear experimental verification, involvement of malecular oxygen in such types of oxidationa oP activated thiocarbonyl coc pounds has been recently auggeetad.4.
Resumo:
It is shown that (i) every probability density is the unique maximizer of relative entropy in an appropriate class and (ii) in the class of all pdf f that satisfy ae fh (i) d mu = lambda (i) for i = 1, 2, ...,... kthe maximizer of entropy is an f (0) that is proportional to exp(I c pound (i) h (i) ) for some choice of c (i) . An extension of this to a continuum of constraints and many examples are presented.
Resumo:
The high-temperature oxidation behavior of modified 304 austenitic stainless steels in a water vapor atmosphere was investigated. Samples were prepared by various thermo mechanical treatments to result in different grain sizes in the range 8-30 mu m. Similar I 3 pound grain boundary fraction was achieved to eliminate any grain-boundary characteristics effect. Samples were oxidized in an air furnace at 700 A degrees C with 20 % water vapor atmosphere. On the fine-grained sample, a uniform Cr2O3 layer was formed, which increased the overall oxidation resistance. Whereas on the coarse-grained sample, an additional Fe2O3 layer formed on the Cr-rich oxide layer, which resulted in a relatively high oxidation rate. In the fine-grained sample, grain boundaries act as rapid diffusion paths for Cr and provided enough Cr to form Cr2O3 oxide on the entire sample surface.
Resumo:
This article reports the acoustic emission (AE) study of precursory micro-cracking activity and fracture behaviour of quasi-brittle materials such as concrete and cement mortar. In the present study, notched three-point bend specimens (TPB) were tested under crack mouth opening displacement (CMOD) control at a rate of 0.0004 mm/sec and the accompanying AE were recorded using a 8 channel AE monitoring system. The various AE statistical parameters including AE event rate , AE energy release rate , amplitude distribution for computing the AE based b-value, cumulative energy (I E) pound and ring down count (RDC) were used for the analysis. The results show that the micro-cracks initiated and grew at an early stage in mortar in the pre peak regime. While in the case of concrete, the micro-crack growth occurred during the peak load regime. However, both concrete and mortar showed three distinct stages of micro-cracking activity, namely initiation, stable growth and nucleation prior to the final failure. The AE statistical behavior of each individual stage is dependent on the number and size distribution of micro-cracks. The results obtained in the laboratory are useful to understand the various stages of micro-cracking activity during the fracture process in quasi-brittle materials such as concrete & mortar and extend them for field applications.
Resumo:
Iodothyronine deiodinases (IDs) are mammalian selenoenzymes that play an important role in the activation and inactivation pound of thyroid hormones. It is known that iodothyronamines (TnAMs), produced by the decarboxylation of thyroid hormones, act as substrates for deiodinases. To understand whether decarboxylation alters the rate and/or regioselectivity of deiodination by using synthetic deiodinase mimics, we studied the deiodination of different iodothyronamines. The triiodo derivative 3,3',5-triiodothyronamine (T3AM) is deiodinated at the inner ring by naphthyl-based deiodinase mimics, which is similar to the deiodination of 3,3',5-triiodothyronine (T3). However, T3AM under-goes much slower deiodination than T3. Detailed experimental and theoretical investigations suggest that T3AM forms a weaker halogen bond with selenium donors than T3. Kinetic studies and single-crystal X-ray structures of T3 and T3AM reveal that intermolecular I center dot center dot center dot I interactions may play an important role in deiodination. The formation of hydrogen- and halogen-bonding assemblies, which leads to the formation of a dimeric species of T3 in solution, facilitates the interactions between the selenium and iodine atoms. In contrast, T3AM, which does not have I center dot center dot I interactions, undergoes much slower deiodination.
Resumo:
NMR relaxation rates (1/T-1), magnetic susceptibility, and electrical conductivity studies in doped poly-3-methylthiophene are reported in this paper. The magnetic susceptibility data show the contributions from both Pauli and Curie spins, with the size of the Pauli term depending strongly on the doping level. Proton and fluorine NMR relaxation rates have been studied as a function of temperature (3-300 K) and field (for protons at 0.9, 9.0, 16.4, and 23.4 T, and for fluorine at 9.0 T). The temperature dependence of T-1 is classified into three regimes: (a) For T < (g mu(B) B/2k(B)), the relaxation mechanism follows a modified Korringa relation due to electron-electron interactions and disorder. H-1-T-1 is due to the electron-nuclear dipolar interaction in addition to the contact term. (b) For the intermediate temperature range (g mu(B) B/2k(B)) < T < T-BPP (the temperature where the contribution from the reorientation motion to the T-1 is insignificant) the relaxation mechanism is via spin diffusion to the paramagnetic centers. (c) In the high-temperature regime and at low Larmor frequency the relaxation follows the modified Bloembergen, Purcell, and Pound model. T-1 data analysis has been carried out in light of these models depending upon the temperature and frequency range of study. Fluorine relaxation data have been analyzed and attributed to the PF6 reorientation. The cross relaxation among the H-1 and F-19 nuclei has been observed in the entire temperature range suggesting the role of magnetic dipolar interaction modulated by the reorientation of the symmetric molecular subgroups. The data analysis shows that the enhancement in the Korringa ratio is greater in a less conducting sample. Intra-and interchain hopping of charge carriers is found to be a dominant relaxation mechanism at low temperature. Frequency dependence of T-1(-1) on temperature shows that at low temperature T < (g mu(B) B/2k(B))] the system shows three dimensions and changes to quasi one dimension at high temperature. Moreover, a good correlation between electrical conductivity, magnetic susceptibility, and NMR T-1 data has been observed.