26 resultados para Extended Executive Information System
em Indian Institute of Science - Bangalore - Índia
Resumo:
Seismic hazard and microzonation of cities enable to characterize the potential seismic areas that need to be taken into account when designing new structures or retrofitting the existing ones. Study of seismic hazard and preparation of geotechnical microzonation maps has been attempted using Geographical Information System (GIS). GIS will provide an effective solution for integrating different layers of information thus providing a useful input for city planning and in particular input to earthquake resistant design of structures in an area. Seismic hazard is the study of expected earthquake ground motions at any point on the earth. Microzonation is the process of sub division of region in to number of zones based on the earthquake effects in the local scale. Seismic microzonation is the process of estimating response of soil layers under earthquake excitation and thus the variation of ground motion characteristic on the ground surface. For the seismic microzonation, geotechnical site characterization need to be assessed at local scale (micro level), which is further used to assess of the site response and liquefaction susceptibility of the sites. Seismotectonic atlas of the area having a radius of 350km around Bangalore has been prepared with all the seismogenic sources and historic earthquake events (a catalogue of about 1400 events since 1906). We have attempted to carryout the site characterization of Bangalore by collating conventional geotechnical boreholes data (about 900 borehole data with depth) and integrated in GIS. 3-D subsurface model of Bangalore prepared using GIS is shown in Figure 1.Further, Shear wave velocity survey based on geophysical method at about 60 locations in the city has been carried out in 220 square Kms area. Site response and local site effects have been evaluated using 1-dimensional ground response analysis. Spatial variability of soil overburden depths, ground surface Peak Ground Acceleration’s(PGA), spectral acceleration for different frequencies, liquefaction susceptibility have been mapped in the 220 sq km area using GIS.ArcInfo software has been used for this purpose. These maps can be used for the city planning and risk & vulnerability studies. Figure 2 shows a map of peak ground acceleration at rock level for Bangalore city. Microtremor experiments were jointly carried out with NGRI scientists at about 55 locations in the city and the predominant frequency of the overburden soil columns were evaluated.
Resumo:
The economic prosperity and quality of life in a region are closely linked to the level of its per capita energy consumption. In India more than 70% of the total population inhabits rural areas and 85-90% of energy requirement is being met by bioresources. With dwindling resources, attention of planners is diverted to viable energy alternatives to meet the rural energy demand. Biogas as fuel is one such alternative, which can be obtained by anaerobic digestion of animal residues and domestic and farm wastes, abundantly available in the countryside. Study presents the techniques to assess biogas potential spatially using GIS in Kolar district, Karnataka State, India. This would help decision makers in selecting villages for implementing biogas programmes based on resource availability. Analyses reveal that the domestic energy requirement of more than 60% population can be met by biogas option. This is based on the estimation of the per capita requirement of gas for domestic purposes and availability of livestock residues.
Resumo:
The INFORMATION SYSTEM with user friendly GUI’s (Graphical user Interface) is developed to maintain the flora data and generate reports for Sharavathi River Basin. The database consists of the information related to trees, herbs, shrubs and climbers. The data is based on the primary field survey and the information available in flora of Shimoga, Karnataka and Hassan flora. User friendly query options based on dichotomous keys are provided to help user to retrieve the data while data entry options aid in updating and editing the database at family, genus and species levels.
Resumo:
This paper primarily intends to develop a GIS (geographical information system)-based data mining approach for optimally selecting the locations and determining installed capacities for setting up distributed biomass power generation systems in the context of decentralized energy planning for rural regions. The optimal locations within a cluster of villages are obtained by matching the installed capacity needed with the demand for power, minimizing the cost of transportation of biomass from dispersed sources to power generation system, and cost of distribution of electricity from the power generation system to demand centers or villages. The methodology was validated by using it for developing an optimal plan for implementing distributed biomass-based power systems for meeting the rural electricity needs of Tumkur district in India consisting of 2700 villages. The approach uses a k-medoid clustering algorithm to divide the total region into clusters of villages and locate biomass power generation systems at the medoids. The optimal value of k is determined iteratively by running the algorithm for the entire search space for different values of k along with demand-supply matching constraints. The optimal value of the k is chosen such that it minimizes the total cost of system installation, costs of transportation of biomass, and transmission and distribution. A smaller region, consisting of 293 villages was selected to study the sensitivity of the results to varying demand and supply parameters. The results of clustering are represented on a GIS map for the region.
Resumo:
Energy plays a prominent role in human society. As a result of technological and industrial development,the demand for energy is rapidly increasing. Existing power sources that are mainly fossil fuel based are leaving an unacceptable legacy of waste and pollution apart from diminishing stock of fuels.Hence, the focus is now shifted to large-scale propagation of renewable energy. Renewable energy technologies are clean sources of energy that have a much lower environmental impact than conventional energy technologies. Solar energy is one such renewable energy. Most renewable energy comes either directly or indirectly from the sun. Estimation of solar energy potential of a region requires detailed solar radiation climatology, and it is necessary to collect extensive radiation data of high accuracy covering all climatic zones of the region. In this regard, a decision support system (DSS)would help in estimating solar energy potential considering the region’s energy requirement.This article explains the design and implementation of DSS for assessment of solar energy. The DSS with executive information systems and reporting tools helps to tap vast data resources and deliver information. The main hypothesis is that this tool can be used to form a core of practical methodology that will result in more resilient in time and can be used by decision-making bodies to assess various scenarios. It also offers means of entering, accessing, and interpreting the information for the purpose of sound decision making.
Resumo:
We consider the problem of transmission of correlated discrete alphabet sources over a Gaussian Multiple Access Channel (GMAC). A distributed bit-to-Gaussian mapping is proposed which yields jointly Gaussian codewords. This can guarantee lossless transmission or lossy transmission with given distortions, if possible. The technique can be extended to the system with side information at the encoders and decoder.
Resumo:
Application of differential geometry to study the dynamics of electrical machines by Gabriel Kron evoked only theoretical interest among the power system engineers and was considered hardly suitable for any practical use. Extension of Kron's work led to a physical understanding of the processes governing the small oscillation instability in power system. This in turn has made it possible to design a self-tuning Power System Stabilizer to contain the oscillatory instability over arm extended range of system and operating conditions. This paper briefly recounts the history of this development and touches upon the essential design features of the stabilizer. It presents some results from simulation studies, laboratory experiments and recently conducted field trials at actual plants-all of which help to establish the efficacy of the proposed stabilizer and corroborate the theoretical findings.
Resumo:
Fully structured and matured open source spatial and temporal analysis technology seems to be the official carrier of the future for planning of the natural resources especially in the developing nations. This technology has gained enormous momentum because of technical superiority, affordability and ability to join expertise from all sections of the society. Sustainable development of a region depends on the integrated planning approaches adopted in decision making which requires timely and accurate spatial data. With the increased developmental programmes, the need for appropriate decision support system has increased in order to analyse and visualise the decisions associated with spatial and temporal aspects of natural resources. In this regard Geographic Information System (GIS) along with remote sensing data support the applications that involve spatial and temporal analysis on digital thematic maps and the remotely sensed images. Open source GIS would help in wide scale applications involving decisions at various hierarchical levels (for example from village panchayat to planning commission) on economic viability, social acceptance apart from technical feasibility. GRASS (Geographic Resources Analysis Support System, http://wgbis.ces.iisc.ernet.in/grass) is an open source GIS that works on Linux platform (freeware), but most of the applications are in command line argument, necessitating a user friendly and cost effective graphical user interface (GUI). Keeping these aspects in mind, Geographic Resources Decision Support System (GRDSS) has been developed with functionality such as raster, topological vector, image processing, statistical analysis, geographical analysis, graphics production, etc. This operates through a GUI developed in Tcltk (Tool command language / Tool kit) under Linux as well as with a shell in X-Windows. GRDSS include options such as Import /Export of different data formats, Display, Digital Image processing, Map editing, Raster Analysis, Vector Analysis, Point Analysis, Spatial Query, which are required for regional planning such as watershed Analysis, Landscape Analysis etc. This is customised to Indian context with an option to extract individual band from the IRS (Indian Remote Sensing Satellites) data, which is in BIL (Band Interleaved by Lines) format. The integration of PostgreSQL (a freeware) in GRDSS aids as an efficient database management system.
Resumo:
his paper presents identification and mapping of vulnerable and safe zones for liquefaction hazard. About 850 bore logs data collected from geotechnical investigation reports have been used to estimate the liquefaction factor of safety for Bangalore Mahanagara palike (BMP) area of about 220 km(2). Liquefaction factor of safety is arrived based on surface level peak ground acceleration presented by Anbazhagan and Sitharam(5) and liquefaction resistance, using corrected standard penetration test (SPT) N values. The estimated factor of safety against liquefaction is used to estimate liquefaction potential index and liquefaction severity index. These values are mapped using Geographical information system (GIS) to identify the vulnerable and safe zones in Bangalore. This study shows that more than 95% of the BMP area is safe against liquefaction potential. However the western part of the BMP is not safe against liquefaction, as it may be subjected to liquefaction with probability of 35 to 65%. Three approaches used in this study show that 1) mapping least factor of safety irrespective of depth may be used to find liquefiable area for worst case. 2) mapping liquefaction potential index can be used to assess the liquefaction severity of the area by considering layer thickness and factor of safety and 3) mapping of liquefaction severity index can be used to access the probability of liquefaction of area.
Resumo:
Urban growth identification, quantification, knowledge of rate and the trends of growth would help in regional planning for better infrastructure provision in environmentally sound way. This requires analysis of spatial and temporal data, which help in quantifying the trends of growth on spatial scale. Emerging technologies such as Remote Sensing, Geographic Information System (GIS) along with Global Positioning System (GPS) help in this regard. Remote sensing aids in the collection of temporal data and GIS helps in spatial analysis. This paper focuses on the analysis of urban growth pattern in the form of either radial or linear sprawl along the Bangalore - Mysore highway. Various GIS base layers such as builtup areas along the highway, road network, village boundary etc. were generated using collateral data such as the Survey of India toposheet, etc. Further, this analysis was complemented with the computation of Shannon's entropy, which helped in identifying prevalent sprawl zone, rate of growth and in delineating potential sprawl locations. The computation Shannon's entropy helped in delineating regions with dispersed and compact growth. This study reveals that the Bangalore North and South taluks contributed mainly to the sprawl with 559% increase in built-up area over a period of 28 years and high degree of dispersion. The Mysore and Srirangapatna region showed 128% change in built-up area and a high potential for sprawl with slightly high dispersion. The degree of sprawl was found to be directly proportional to the distances from the cities.
Resumo:
Rural population of India constitutes about 70% of the total population and traditional fuels account for 75% of the rural energy needs. Depletion of woodlands coupled with the persistent dependency on fuel wood has posed a serious problem for household energy provision in many parts. This study highlights that the traditional fuels still meet 85-95% of fuel needs in rural areas of Kolar district: people prefer fuel wood for cooking and agriculture residues for water heating and other purposes. However, rapid changes in land cover and land use in recent times have affected these traditional fuels availability necessitating inventorying, mapping and monitoring of bioresources for sustainable management of bioresources. Remote sensing data (Multispectal and Panchromatic), Geographic Information System (GIS), field surveys and non-destructive sampling were used to assess spatially the availability and demand of energy. Field surveys indicate that rural household depends on species such as Prosopis juliflora, Acacia nilotica, Acacia auriculiformis to meet fuel wood requirement for domestic activities. Hence, to take stock of fuel wood availability, mapping was done at species level (with 88% accuracy) considering villages as sampling units using fused multispectral and panchromatic data. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
We report here the role of remote sensing (RS) and geographical information system (GIS) in the identification of geomorphic records and understanding of the local controls on the retreat of glaciers of the Baspa Valley, Himachal Pradesh, India. The geomorphic records mapped are accumulation zone, exposed ablation zone, moraine-covered ablation zone, snout, deglaciated valley, lateral moraine, medial moraine, terminal moraine and hanging glacier. Details of these features and stages of deglaciation have been extracted from RS data and mapped in a GIS environment. Glacial geomorphic data have been generated for 22 glaciers of the Baspa Valley. The retreat of glaciers has been estimated using the glacial maxima observed on satellite images. On the basis of percentage of retreat and the critical analysis of glacial geomorphic data for 22 glaciers of the Baspa Valley, they are classified into seven categories of very low to very very high retreat. From the analysis of the above 22 glaciers, it has been found that other than global warming, the retreat of glaciers of the Baspa Valley is inversely proportional to the size of the accumulation zone and the ratio of the moraine covered ablation/exposed ablation zone.