66 resultados para Exponents
em Indian Institute of Science - Bangalore - Índia
Resumo:
Electrical resistance (R) measurements are reported for ternary mixtures of 3-methylpyridine, water and heavy water as a function of temperature (T) and heavy water content in total water. These mixtures exhibit a limited two-phase region marked by a loop size (ΔT) that goes to zero as the double critical point (DCP) is approached. The measurements scanned the ΔT range 1.010°C less-than-or-equals, slant ΔT less-than-or-equals, slant 77.5°C. The critical exponent (θ), which signifies the divergence of ∂R/∂T, doubles within our experimental uncertainties as the DCP is reached very closely.
Resumo:
To investigate the nature of the curve of critical exponents (as a function of the distance from a double critical point), we have combined our measurements of the osmotic compressibility with all published data for quasibinary liquid mixtures. This curve has a parabolic shape. An explanation of this result is advanced in terms of the geometry of the coexistence dome, which is contained in a triangular prism.
Resumo:
It has recently been proposed that the broad spectrum of interannual variability in the tropics with a peak around four years results from an interaction between the linear low-frequency oscillatory mode of the coupled system and the nonlinear higher-frequency modes of the system. In this study we determine the Lyapunov exponents of the conceptual model consisting of a nonlinear low-order model coupled to a linear oscillator for various values of the coupling constants.
Resumo:
The three indicators of isentropic lines, namely, the isentropic index, the ratio of pressure and density p/rho and the derivative (partial derivative p/partial derivative rho)s are investigated for all of the fluids in the RefProp 9.0 program. The behaviour of these three entities is evaluated along the saturated vapour line as well as in the superheated vapour region. There is a distinct demarcation of fluids whose isentropic indices can be less than 1 and others for which this behaviour is absent. The critical molar volume is found to be the characterizing feature. Several other interesting features of those three thermodynamic properties are also highlighted. It is observed that most practical engineering compression and expansion processes occur along the decreasing direction of the sound speed.
Resumo:
This is the first report on studies carried out in detail on high-pressure oxygen copolymerization (> 50 psi) of the vinyl monomers styrene and alpha-methylstyrene (AMS). The saturation pressure of oxygen for AMS oxidation, hitherto obscure, is found to be 300 psi. Whereas the ease of oxidation is more favorable for styrene, the rate and yield of polyperoxide formation are higher for AMS. This is explained on the basis of the reactivity of the corresponding alkyl and peroxy radicals. Below 50 degrees C, degradation of the poly(styrene peroxide) formed is about 2.5 times less than that observed above 50 degrees C, so much so that it gives a break in the rate curve, and thereafter the rate is lowered. Normal free radical kinetics is followed before the break point, after which the monomer and initiator exponents become unusually high. This is interpreted on the basis of chain transfer to the degradation products. The low molecular weight of polyperoxides has been attributed to the (i) low reactivity of RO(2)(.) toward the monomer, (ii) chain transfer to degradation products, (iii) facile cleavage of O-O bond, followed by unzipping to nonradical products, and (iv) higher stability of the reinitiating radicals. At lower temperatures, (i) predominates, whereas at higher temperatures, chiefly (ii)-(iv) are the case.
Resumo:
In contrast to metallic alloys, the mechanical characteristics of superplastic ceramics are very sensitive to minor changes in levels of trace impurities. In the present study, the mechanical behavior of a 2 mol% yttria stabilized tetragonal zirconia was studied in tension and compression in two batches of material, with small variations in levels of trace impurities, to examine the influence of stress axis and impurity content on the deformation behavior. The mechanical properties of the material were characterized in terms of the expression: (epsilon)over dot proportional to sigma(n) where (epsilon)over dot is the strain rate, sigma is the stress and n is termed the stress exponent. The mechanical behavior of the ceramic was identical in tension and compression, for a material with a given level of impurity. The high purity specimens exhibited a transition from a stress exponent of similar to 3 to similar to 2 with an increase in stress, whereas the low purity material displayed only n similar to 2 behavior over the entire stress range studied. Detailed high resolution and analytical electron microscopy studies revealed that there was no amorphous phase at interfaces in both batches of material; however, segregation of Al at interfaces was detected only in the low purity material. The observed transition in stress exponents can be rationalized in terms of two sequential mechanisms: grain boundary sliding with n similar to 2 and interface reaction controlled grain boundary sliding with n similar to 3. The transition from n similar to 3 to similar to 2 occurred at lower stresses with an increase in the grain size and a decrease in the purity level.
Resumo:
The free radical polymerization of acrylonitrile (AN) initiated by Cu(I1) 4-anilino 3-pentene 2-one [Cu(II) ANIPO] Cu(II), 4-p-toluedeno 3-pentene 2-one [Cu(II) TPO], and Cu(I1) 4-p-nitroanilino 3-pentene 2-one [Cu(II) NAPO] was studied in benzene at 50 and 60°C and in carbon tetrachloride (CCld), dimethyl sulfoxide (DMSO), and methanol (MeOH) at 60°C. Although the polymerization proceeded in a heterogeneous phase, it followed the kinetics of a homogeneous process. The monomer exponents were 22 at two different temperatures and in different solvents. The square-root dependence of R, on initiator concentration and higher monomer exponents accounted for a 1:2 complex formation between the chelate and monomer. The complex formatign was shown by ultraviolet (UV) study. The activation energies, kinetics, and chain transfer constants were also evaluated.
Resumo:
We present a detailed direct numerical simulation (DNS) of the two-dimensional Navier-Stokes equation with the incompressibility constraint and air-drag-induced Ekman friction; our DNS has been designed to investigate the combined effects of walls and such a friction on turbulence in forced thin films. We concentrate on the forward-cascade regime and show how to extract the isotropic parts of velocity and vorticity structure functions and hence the ratios of multiscaling exponents. We find that velocity structure functions display simple scaling, whereas their vorticity counterparts show multiscaling, and the probability distribution function of the Weiss parameter 3, which distinguishes between regions with centers and saddles, is in quantitative agreement with experiments.
Resumo:
The free radical polymerization of acrylonitrile (AN) initiated by Cu(II) 4-anilino 2-one [Cu(II) ANIPO] Cu(II), 4-p-toluedeno 3-pentene 2-one [Cu(II) TPO], and Cu(II) 4-p-nitroanilino 3-pentene 2-one [Cu(II) NAPO] was studied in benzene at 50 and 60°C and in carbon tetrachloride (CCl4), dimethyl sulfoxide (DMSO), and methanol (MeOH) at 60°C. Although the polymerization proceeded in a heterogeneous phase, it followed the kinetics of a homogeneous process. The monomer exponents were 2 at two different temperatures and in different solvents. The square-root dependence of Rp on initiator concentration and higher monomer exponents accounted for a 1:2 complex formation between the chelate and monomer. The complex formation was shown by ultraviolet (UV) study. The activation energies, kinetics, and chain transfer constants were also evaluated.
Resumo:
A comparative study of the electric-field induced hopping transport probes the effective dimensionality (D) in bulk and ultrathin films of single-wall carbon nanotubes (SWNTs). The values of the scaling function exponents for the electroconductance are found to be consistent with that in three-dimensional and two-dimensional systems. The significant difference in threshold voltage in these two types of SWNTs is a consequence of the variation in the number of energetically favorable sites available for charge carriers to hop by using the energy from the field. Furthermore, a modification to the magnetotransport is observed under high electric-fields.
Resumo:
Grain misorientation was studied in relation to the nearest neighbor's mutual distance using electron back-scattered diffraction measurements. The misorientation correlation function was defined as the probability density for the occurrence of a certain misorientation between pairs of grains separated by a certain distance. Scale-invariant spatial correlation between neighbor grains was manifested by a power law dependence of the preferred misorientation vs. inter-granular distance in various materials after diverse strain paths. The obtained negative scaling exponents were in the range of -2 +/- 0.3 for high-angle grain boundaries. The exponent decreased in the presence of low-angle grain boundaries or dynamic recrystallization, indicating faster decay of correlations. The correlations vanished in annealed materials. The results were interpreted in terms of lattice incompatibility and continuity conditions at the interface between neighboring grains. Grain-size effects on texture development, as well as the implications of such spatial correlations on texture modeling, were discussed.
Resumo:
Silica segregation at two grain junctions or in amorphous triple junction pockets can influence creep by altering the grain-boundary diffusion coefficient. Although the addition of silica to superplastic yttria-stabilized tetragonal zirconia enhances ductility, differences in reported creep parameters have limited critical identification of rate controlling mechanisms. The present study on a pure 3 mol% yttria-stabilized tetragonal zirconia (3YTZ) and 3YTZ with 0.39 or 3.9 wt% silica involved a detailed characterization of creep over a wide range of experimental conditions and also tracer diffusion measurements. The data broadly show transitions in creep stress exponents from n∼1 to ∼2 to ∼3 with a decrease in the stress. The data at high stresses are consistent with Coble diffusion creep, and creep at lower stresses is attributed to interface-controlled diffusion creep. Measurements indicated that silica does not have any significant influence on grain boundary or lattice diffusion, and this is consistent with the observation that 3YTZ and 3YTZ with 0.39% or 3.9% silica exhibit essentially identical creep behavior in the Coble creep regime. Silica influences the interface control process so that the transitions in stress exponents are pushed to lower stresses with an increase in silica content.
Resumo:
A model of polymer translocation based on the stochastic dynamics of the number of monomers on one side of a pore-containing surface is formulated in terms of a one-dimensional generalized Langevin equation, in which the random force is assumed to be characterized by long-ranged temporal correlations. The model is introduced to rationalize anomalies in measured and simulated values of the average time of passage through the pore, which in general cannot be satisfactorily accounted for by simple Brownian diffusion mechanisms. Calculations are presented of the mean first passage time for barrier crossing and of the mean square displacement of a monomeric segment, in the limits of strong and weak diffusive bias. The calculations produce estimates of the exponents in various scaling relations that are in satisfactory agreement with available data.
Resumo:
The significance of treating rainfall as a chaotic system instead of a stochastic system for a better understanding of the underlying dynamics has been taken up by various studies recently. However, an important limitation of all these approaches is the dependence on a single method for identifying the chaotic nature and the parameters involved. Many of these approaches aim at only analyzing the chaotic nature and not its prediction. In the present study, an attempt is made to identify chaos using various techniques and prediction is also done by generating ensembles in order to quantify the uncertainty involved. Daily rainfall data of three regions with contrasting characteristics (mainly in the spatial area covered), Malaprabha, Mahanadi and All-India for the period 1955-2000 are used for the study. Auto-correlation and mutual information methods are used to determine the delay time for the phase space reconstruction. Optimum embedding dimension is determined using correlation dimension, false nearest neighbour algorithm and also nonlinear prediction methods. The low embedding dimensions obtained from these methods indicate the existence of low dimensional chaos in the three rainfall series. Correlation dimension method is done on th phase randomized and first derivative of the data series to check whether the saturation of the dimension is due to the inherent linear correlation structure or due to low dimensional dynamics. Positive Lyapunov exponents obtained prove the exponential divergence of the trajectories and hence the unpredictability. Surrogate data test is also done to further confirm the nonlinear structure of the rainfall series. A range of plausible parameters is used for generating an ensemble of predictions of rainfall for each year separately for the period 1996-2000 using the data till the preceding year. For analyzing the sensitiveness to initial conditions, predictions are done from two different months in a year viz., from the beginning of January and June. The reasonably good predictions obtained indicate the efficiency of the nonlinear prediction method for predicting the rainfall series. Also, the rank probability skill score and the rank histograms show that the ensembles generated are reliable with a good spread and skill. A comparison of results of the three regions indicates that although they are chaotic in nature, the spatial averaging over a large area can increase the dimension and improve the predictability, thus destroying the chaotic nature. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
An analytical treatment of performance analysis of guidance laws is possible only in simplistic scenarios. As the complexity of the guidance system increases, a search for analytical solutions becomes quite impractical. In this paper, a new performance measure, based upon the notion of a timescale gap that can be computed through numerical simulations, is developed for performance analysis of guidance laws. Finite time Lyapunov exponents are used to define the timescale gap. It is shown that the timescale gap can be used for quantification of the rate of convergence of trajectories to the collision course. Comparisonbetween several guidance laws, based on the timescale gap, is presented. Realistic simulations to study the effect of aerodynamicsand atmospheric variations on the timescale gap of these guidance laws are also presented.