3 resultados para Exponential financial models

em Indian Institute of Science - Bangalore - Índia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examine the stability of hadron resonance gas models by extending them to include undiscovered resonances through the Hagedorn formula. We find that the influence of unknown resonances on thermodynamics is large but bounded. We model the decays of resonances and investigate the ratios of particle yields in heavy-ion collisions. We find that observables such as hydrodynamics and hadron yield ratios change little upon extending the model. As a result, heavy-ion collisions at the RHIC and LHC are insensitive to a possible exponential rise in the hadronic density of states, thus increasing the stability of the predictions of hadron resonance gas models in this context. Hadron resonance gases are internally consistent up to a temperature higher than the crossover temperature in QCD, but by examining quark number susceptibilities we find that their region of applicability ends below the QCD crossover.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-exponential electron transfer kinetics in complex systems are often analyzed in terms of a quenched, static disorder model. In this work we present an alternative analysis in terms of a simple dynamic disorder model where the solvent is characterized by highly non-exponential dynamics. We consider both low and high barrier reactions. For the former, the main result is a simple analytical expression for the survival probability of the reactant. In this case, electron transfer, in the long time, is controlled by the solvent polarization relaxation-in agreement with the analyses of Rips and Jortner and of Nadler and Marcus. The short time dynamics is also non-exponential, but for different reasons. The high barrier reactions, on the other hand, show an interesting dynamic dependence on the electronic coupling element, V-el.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider evolving exponential RGGs in one dimension and characterize the time dependent behavior of some of their topological properties. We consider two evolution models and study one of them detail while providing a summary of the results for the other. In the first model, the inter-nodal gaps evolve according to an exponential AR(1) process that makes the stationary distribution of the node locations exponential. For this model we obtain the one-step conditional connectivity probabilities and extend it to the k-step case. Finite and asymptotic analysis are given. We then obtain the k-step connectivity probability conditioned on the network being disconnected. We also derive the pmf of the first passage time for a connected network to become disconnected. We then describe a random birth-death model where at each instant, the node locations evolve according to an AR(1) process. In addition, a random node is allowed to die while giving birth to a node at another location. We derive properties similar to those above.