10 resultados para Ewing sarcoma
em Indian Institute of Science - Bangalore - Índia
Resumo:
Chromomycin A3, mithramycin, olivomycin and actinomycin D, four antitumor antibiotics inhibit growth of Yoshida ascites sarcoma (YAS). The antibiotic treated tumor-free rats exhibit antitumor immunity as judged by rejection of subsequent tumor transplant. The lymphocytes from immune rats are able to inhibit tumor growth in syngenic animals.
Resumo:
A purified antitumor protein from the proteinaceous crystal of Bacillus thuringiensis subsp. thuringiensis inhibits the growth of Yoshida ascites sarcoma both in vivo and in vitro. Exogenous respiration of the tumor cells was unaffected by the protein at a concentration as high as 500 µg/ml. The antitumor protein inhibits the uptake and incorporation of labeled precursors into macromolecules. However, the ratio of incorporation over uptake is not affected by the protein. Further, the protein brings about the leakage of 260-nm-absorbing material, proteins, and 32P-labeled cellular constituents from the Yoshida ascites sarcoma cells. The results show that the action of the antitumor protein appears to alter the cellular permeability of the tumor cells.
Resumo:
Isonicotinic acid hydrazide (isoniazid), one of the most potent antitubercular drugs, was recently shown, in our laboratory, to form two different complexes with copper, depending upon the oxidation state of the metal ion. Both the complexes have been shown to possess antiviral activity against Rous sarcoma virus, an RNA tumor virus. The antiviral activity of the complexes has been attributed to their ability to inhibit the endogenous reverse transcriptase activity of RSV. More recent studies in our laboratory indicate that both these complexes inhibit both endogenous and exogenous reactions. As low a final concentration as 50 μM of the cupric and the cuprous complexes inhibits the endogenous reaction to the extent of 93 and 75 per cent respectively. Inhibition of the exogenous reaction varies with the templates. The inhibition can be reversed by either β-mercaptoethanol or ethylene-diamine-tetra-acetic acid. The specificity of this inhibition has been ascertained by using a synthetic primer-template, −(dG)not, vert, similar15−(rCm)n, which is highly specific for reverse transcriptases. The inhibition is found to be template specific. The studies carried out, using various synthetic primer-templates, show the inhibition of both the steps of reverse transcription by the copper complexes of isoniazid.
Resumo:
The antitumor activity of Image -asparagine amidohydrolases (EC 3.5.1.1) from Mycobacterium tuberculosis H37Rv and H37Ra strains has been tested on Yoshida ascites sarcoma in rats. The enzyme specific to M. tuberculosis H37Ra but not to H37Rv has proved to be effective in inhibiting the growth of the sarcoma. Comparative studies on the activity of this enzyme with that of similar enzyme from Escherichia coli B, has shown that at the same levels the former is more effective than the latter. Long-lived immunity to this tumor in A/IISc Wistar rats following treatment of tumor bearing animals with M. tuberculosis H37Ra, pH 9.6 Image -asparaginase has been observed. Immunity in these rats was demonstrated by tumor rejection and detection of humoral antibodies in the sera to the antigen of the cell-free extract of the tumor. The enzyme was ineffective in inhibiting fibrosarcoma in mice at the dose levels tested.
Resumo:
The copper complex of the antituberculous drug, isonicotinic acid hydrazide (INH), inhibits the RNA-dependent DNA polymerase of Rous sarcoma virus and inactivates its ability to malignantly transform chick embryo cells. The INH-copper complex binds to the 70S genome RNA of Rous sarcoma virus (RSV), which may account for its ability to inhibit the RNA-dependent DNA polymerase. The complex binds RNA more effectively than DNA in contrast to M-IBT-copper complexes, which bind both types of nucleic acids equally. The homopolymers, poly rA and poly rU, are bound by the INH-copper complex to a greater extent than poly rC. Isonicotinic acid hydrazide alone and CuSO4 alone bind neither DNA, RNA, poly (rA), poly (rU), nor poly (rC). However, CuSO4 alone binds poly (rI); INH alone does not. In addition to viral DNA synthesis, chick-embryo cell DNA synthesis is inhibited by the INH-copper complex. The extent of inhibition of cellular DNA synthesis is greater than that of cellular RNA and protein synthesis. No selective inhibition of transformation in cells previously infected with Rous sarcoma virus is observed.
Resumo:
The binding of chromomycin A3, an antitumour antibiotic, to various DNA and chromatin isolated from mouse and rat liver, mouse fibrosarcoma and Yoshida ascites sarcoma cells was studied spectrophotometrically at 29°C in 10−2 M Tris-HCl buffer, pH 8.0, containing small amounts of MgCl2 (4.5 · 10−5−25 · 10−5 M). An isobestic point at 415 nm was observed when chromomycin A3 was gradually titrated with Image and its spectrum shifted towards higher wavelength. The rates and extent of these spectral changes were found to be dependent on the concentration of Mg2+. The change in absorbance at 440 nm was used to calculate apparent binding constant (Ka p M−1) and sites per nucleotide (n) from Scatchard plots for various DNA and chromatins. As expected, values of n for chromatin (0.06–0.10) were found to be lower than that found for corresponding DNA (0.10–0.15). Apparently no such correlation exists between binding constants (Ka p M−1 · 10−4) of DNA (6.4–11.2) and of chromatin (3.1–8.3), but Ka p M−1 of chromatin isolated from mouse fibrosarcoma and Yoshida ascites sarcoma are 1.5–3 times higher than that found for mouse and rat liver chromatin. These differences may be taken to indicate structural difference in nucleoprotein complexes caused by neoplasia. The relevance of this finding to tumour suppressive action of chromomycin A3 is discussed.
Resumo:
Sugar-based amphiphiles, consisting of two sugar head groups and an alkylene chain within the molecules, are synthesized and their aggregation and mesomorphic properties are evaluated. The hydrophilic sugar head groups, constituted with beta-D-glucopyranoside units, and the lyophilic alkylene units, are coupled to a glycerol backbone to afford the 'double-headed' sugar amphiphiles. Aggregation studies in aqueous solutions provided their critical micellar concentrations and the aggregation numbers. Mesophase characterizations by polarizing optical microscopy and differential scanning calorimetry (DSC) revealed the phase-transition behaviour of these new 'double-headed' glycolipids.
Resumo:
The objective of the present work is to study the effect of electrical process Parameters (duty cycle and frequency) on morphological, structural, and in-vitro corrosion characteristics of oxide films formed on zirconium by plasma electrolytic oxidation in an electrolyte system consisting of 5 g/L of trisodium orthophosphate. The oxide films fabricated on zirconium by systematically varying the duty cycle and frequency are characterized for its phase composition, surface morphology, chemical composition, roughness, wettability, surface energy, scratch resistance, corrosion resistance, apatite forming ability and osteoblast cell adhesion. X-ray diffraction pattern of all the oxide films showed the predominance of m-ZrO2 phase. Dense and uniform films with thickness varying from 9 to 15 mu m and roughness in the range of 0.62 to 1.03 mu m are formed. Porosity of oxide films is found to be increased with an increase infrequency. The water contact angle results demonstrated that the oxide films exhibited similar hydrophilicity to zirconium substrate. All oxide films showed improved corrosion resistance, as indicated by far lower corrosion current density and passive corrosion potential compared to the zirconium substrate in simulated body fluid environment, and among the four different combinations of duty cycle and frequency employed in the present study, the oxide film formed at 95% duty cycle and 50 Hz frequency (HDLF film) showed superior pitting corrosion resistance, which can be attributed to its pore free morpholOgy. Scratch test results showed that the HDLF oxide film adhered firmly to the substrate by developing a notable scratch resistance at 19.5 +/- 1.2.N. Besides the best corrosion resistance and scratch retistance, the HDLF film also showed good apatite forming ability and osteo sarcoma cell adhesion on its surface. The HDLF oxide film on zirconium with superior surface characteristics is believed to be useful for various types of implants in the dental and orthopedic fields. (C) 2015 Elsevier B.V. All rights reserved.