10 resultados para Event data recorders.

em Indian Institute of Science - Bangalore - Índia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The central part of the Himalaya (Kumaun and Garhwal Provinces of India) is noted for its prolonged seismic quiescence, and therefore, developing a longer-term time series of past earthquakes to understand their recurrence pattern in this segment assumes importance. In addition to direct observations of offsets in stratigraphic exposures or other proxies like paleoliquefaction, deformation preserved within stalagmites (speleothems) in karst system can be analyzed to obtain continuous millennial scale time series of earthquakes. The Central Indian Himalaya hosts natural caves between major active thrusts forming potential storehouses for paleoseismological records. Here, we present results from the limestone caves in the Kumaun Himalaya and discuss the implications of growth perturbations identified in the stalagmites as possible earthquake recorders. This article focuses on three stalagmites from the Dharamjali Cave located in the eastern Kumaun Himalaya, although two other caves, one of them located in the foothills, were also examined for their suitability. The growth anomalies in stalagmites include abrupt tilting or rotation of growth axes, growth termination, and breakage followed by regrowth. The U-Th age data from three specimens allow us to constrain the intervals of growth anomalies, and these were dated at 4273 +/- 410 years BP (2673-1853 BC), 2782 +/- 79 years BP (851-693 BC), 2498 +/- 117 years BP (605-371 BC), 1503 +/- 245 years BP (262-752 AD), 1346 +/- 101 years BP (563-765 AD), and 687 +/- 147 years BP (1176-1470 AD). The dates may correspond to the timings of major/great earthquakes in the region and the youngest event (1176-1470 AD) shows chronological correspondence with either one of the great medieval earthquakes (1050-1250 and 1259-1433 AD) evident from trench excavations across the Himalayan Frontal Thrust.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data flow computers are high-speed machines in which an instruction is executed as soon as all its operands are available. This paper describes the EXtended MANchester (EXMAN) data flow computer which incorporates three major extensions to the basic Manchester machine. As extensions we provide a multiple matching units scheme, an efficient, implementation of array data structure, and a facility to concurrently execute reentrant routines. A simulator for the EXMAN computer has been coded in the discrete event simulation language, SIMULA 67, on the DEC 1090 system. Performance analysis studies have been conducted on the simulated EXMAN computer to study the effectiveness of the proposed extensions. The performance experiments have been carried out using three sample problems: matrix multiplication, Bresenham's line drawing algorithm, and the polygon scan-conversion algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the functioning of a neural system in terms of its underlying circuitry is an important problem in neuroscience. Recent d evelopments in electrophysiology and imaging allow one to simultaneously record activities of hundreds of neurons. Inferring the underlying neuronal connectivity patterns from such multi-neuronal spike train data streams is a challenging statistical and computational problem. This task involves finding significant temporal patterns from vast amounts of symbolic time series data. In this paper we show that the frequent episode mining methods from the field of temporal data mining can be very useful in this context. In the frequent episode discovery framework, the data is viewed as a sequence of events, each of which is characterized by an event type and its time of occurrence and episodes are certain types of temporal patterns in such data. Here we show that, using the set of discovered frequent episodes from multi-neuronal data, one can infer different types of connectivity patterns in the neural system that generated it. For this purpose, we introduce the notion of mining for frequent episodes under certain temporal constraints; the structure of these temporal constraints is motivated by the application. We present algorithms for discovering serial and parallel episodes under these temporal constraints. Through extensive simulation studies we demonstrate that these methods are useful for unearthing patterns of neuronal network connectivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Frequent episode discovery is a popular framework for mining data available as a long sequence of events. An episode is essentially a short ordered sequence of event types and the frequency of an episode is some suitable measure of how often the episode occurs in the data sequence. Recently,we proposed a new frequency measure for episodes based on the notion of non-overlapped occurrences of episodes in the event sequence, and showed that, such a definition, in addition to yielding computationally efficient algorithms, has some important theoretical properties in connecting frequent episode discovery with HMM learning. This paper presents some new algorithms for frequent episode discovery under this non-overlapped occurrences-based frequency definition. The algorithms presented here are better (by a factor of N, where N denotes the size of episodes being discovered) in terms of both time and space complexities when compared to existing methods for frequent episode discovery. We show through some simulation experiments, that our algorithms are very efficient. The new algorithms presented here have arguably the least possible orders of spaceand time complexities for the task of frequent episode discovery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we consider the process of discovering frequent episodes in event sequences. The most computationally intensive part of this process is that of counting the frequencies of a set of candidate episodes. We present two new frequency counting algorithms for speeding up this part. These, referred to as non-overlapping and non-inteleaved frequency counts, are based on directly counting suitable subsets of the occurrences of an episode. Hence they are different from the frequency counts of Mannila et al [1], where they count the number of windows in which the episode occurs. Our new frequency counts offer a speed-up factor of 7 or more on real and synthetic datasets. We also show how the new frequency counts can be used when the events in episodes have time-durations as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Discovering patterns in temporal data is an important task in Data Mining. A successful method for this was proposed by Mannila et al. [1] in 1997. In their framework, mining for temporal patterns in a database of sequences of events is done by discovering the so called frequent episodes. These episodes characterize interesting collections of events occurring relatively close to each other in some partial order. However, in this framework(and in many others for finding patterns in event sequences), the ordering of events in an event sequence is the only allowed temporal information. But there are many applications where the events are not instantaneous; they have time durations. Interesting episodesthat we want to discover may need to contain information regarding event durations etc. In this paper we extend Mannila et al.’s framework to tackle such issues. In our generalized formulation, episodes are defined so that much more temporal information about events can be incorporated into the structure of an episode. This significantly enhances the expressive capability of the rules that can be discovered in the frequent episode framework. We also present algorithms for discovering such generalized frequent episodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design and development of a Bottom Pressure Recorder for a Tsunami Early Warning System is described here. The special requirements that it should satisfy for the specific application of deployment at ocean bed and pressure monitoring of the water column above are dealt with. A high-resolution data digitization and low circuit power consumption are typical ones. The implementation details of the data sensing and acquisition part to meet these are also brought out. The data processing part typically encompasses a Tsunami detection algorithm that should detect an event of significance in the background of a variety of periodic and aperiodic noise signals. Such an algorithm and its simulation are presented. Further, the results of sea trials carried out on the system off the Chennai coast are presented. The high quality and fidelity of the data prove that the system design is robust despite its low cost and with suitable augmentations, is ready for a full-fledged deployment at ocean bed. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Event-triggered sampling (ETS) is a new approach towards efficient signal analysis. The goal of ETS need not be only signal reconstruction, but also direct estimation of desired information in the signal by skillful design of event. We show a promise of ETS approach towards better analysis of oscillatory non-stationary signals modeled by a time-varying sinusoid, when compared to existing uniform Nyquist-rate sampling based signal processing. We examine samples drawn using ETS, with events as zero-crossing (ZC), level-crossing (LC), and extrema, for additive in-band noise and jitter in detection instant. We find that extrema samples are robust, and also facilitate instantaneous amplitude (IA), and instantaneous frequency (IF) estimation in a time-varying sinusoid. The estimation is proposed solely using extrema samples, and a local polynomial regression based least-squares fitting approach. The proposed approach shows improvement, for noisy signals, over widely used analytic signal, energy separation, and ZC based approaches (which are based on uniform Nyquist-rate sampling based data-acquisition and processing). Further, extrema based ETS in general gives a sub-sampled representation (relative to Nyquistrate) of a time-varying sinusoid. For the same data-set size captured with extrema based ETS, and uniform sampling, the former gives much better IA and IF estimation. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose data acquisition from continuous-time signals belonging to the class of real-valued trigonometric polynomials using an event-triggered sampling paradigm. The sampling schemes proposed are: level crossing (LC), close to extrema LC, and extrema sampling. Analysis of robustness of these schemes to jitter, and bandpass additive gaussian noise is presented. In general these sampling schemes will result in non-uniformly spaced sample instants. We address the issue of signal reconstruction from the acquired data-set by imposing structure of sparsity on the signal model to circumvent the problem of gap and density constraints. The recovery performance is contrasted amongst the various schemes and with random sampling scheme. In the proposed approach, both sampling and reconstruction are non-linear operations, and in contrast to random sampling methodologies proposed in compressive sensing these techniques may be implemented in practice with low-power circuitry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most pattern mining methods yield a large number of frequent patterns, and isolating a small relevant subset of patterns is a challenging problem of current interest. In this paper, we address this problem in the context of discovering frequent episodes from symbolic time-series data. Motivated by the Minimum Description Length principle, we formulate the problem of selecting relevant subset of patterns as one of searching for a subset of patterns that achieves best data compression. We present algorithms for discovering small sets of relevant non-redundant episodes that achieve good data compression. The algorithms employ a novel encoding scheme and use serial episodes with inter-event constraints as the patterns. We present extensive simulation studies with both synthetic and real data, comparing our method with the existing schemes such as GoKrimp and SQS. We also demonstrate the effectiveness of these algorithms on event sequences from a composable conveyor system; this system represents a new application area where use of frequent patterns for compressing the event sequence is likely to be important for decision support and control.