4 resultados para Euro-ocidente
em Indian Institute of Science - Bangalore - Índia
Resumo:
The leader protease (L-pro) and capsid-coding sequences (P1) constitute approximately 3 kb of the foot-and-mouth disease virus (FMDV). We studied the phylogenetic relationship of 46 FMDV serotype A isolates of Indian origin collected during the period 1968-2005 and also eight vaccine strains using the neighbour-joining tree and Bayesian tree methods. The viruses were categorized under three major groups - Asian, Euro-South American and European. The Indian isolates formed a distinct genetic group among the Asian isolates. The Indian isolates were further classified into different genetic subgroups (<5% divergence). Post-1995 isolates were divided into two subgroups while a few isolates which originated in the year 2005 from Andhra Pradesh formed a separate group. These isolates were closely related to the isolates of the 1970s. The FMDV isolates seem to undergo reverse mutation or onvergent evolution wherein sequences identical to the ancestors are present in the isolates in circulation. The eight vaccine strains included in the study were not related to each other and belonged to different genetic groups. Recombination was detected in the L-pro region in one isolate (A IND 20/82) and in the VP1 coding 1D region in another isolate (A RAJ 21/96). Positive selection was identified at aa positions 23 in the L-pro (P<0.05; 0.046*) and at aa 171 in the capsid protein VP1 (P<0.01; 0.003**).
Resumo:
Novel molecular matrices have been derived from coumarin-4-acetic acids and beta-phenylethylamines using the Bischler-Napieralski protocol which has led to the synthesis of analogues of tetrahydropapaverine in which the dimethoxybenzene moiety has been replaced by substituted coumarins. One carbon homologation has led to cyclization at the C3 position of coumarin generating the protoberberine skeleton. Structures have been confirmed by diffraction studies. The results showed that compounds 6e, 6f, 7e and 7f were found to be very effective against DNA samples of Gram positive bacterium Staphylococcus aureus and fungus Aspergillus niger. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
This paper presents a novel approach for designing a fixed gain robust power system stabilizer (PSS) with particu lar emphasis on achieving a minimum closed loop perfor mance, over a wide range of operating and system condi tion. The minimum performance requirements of the con troller has been decided apriori and obtained by using a genetic algorithm (GA) based power system stabilizer. The proposed PSS is robust to changes in the plant parameters brought about due to changes in system and operating con dition, guaranteeing a minimum performance. The efficacy of the proposed method has been tested on a multimachine system. The proposed method of tuning the PSS is an at tractive alternative to conventional fixed gain stabilizer de sign, as it retains the simplicity of the conventional PSS and still guarantees a robust acceptable performance over a wider range of operating and system condition.
Resumo:
Rapid advancements in multi-core processor architectures coupled with low-cost, low-latency, high-bandwidth interconnects have made clusters of multi-core machines a common computing resource. Unfortunately, writing good parallel programs that efficiently utilize all the resources in such a cluster is still a major challenge. Various programming languages have been proposed as a solution to this problem, but are yet to be adopted widely to run performance-critical code mainly due to the relatively immature software framework and the effort involved in re-writing existing code in the new language. In this paper, we motivate and describe our initial study in exploring CUDA as a programming language for a cluster of multi-cores. We develop CUDA-For-Clusters (CFC), a framework that transparently orchestrates execution of CUDA kernels on a cluster of multi-core machines. The well-structured nature of a CUDA kernel, the growing popularity, support and stability of the CUDA software stack collectively make CUDA a good candidate to be considered as a programming language for a cluster. CFC uses a mixture of source-to-source compiler transformations, a work distribution runtime and a light-weight software distributed shared memory to manage parallel executions. Initial results on running several standard CUDA benchmark programs achieve impressive speedups of up to 7.5X on a cluster with 8 nodes, thereby opening up an interesting direction of research for further investigation.