27 resultados para Eu-O associate
em Indian Institute of Science - Bangalore - Índia
Resumo:
RecJ exonuclease plays crucial roles in several DNA repair and recombination pathways, and its ubiquity in bacterial species points to its ancient origin and vital cellular function. RecJ exonuclease from Haemophilus influenzae is a 575-amino-acid protein that harbors the characteristic motifs conserved among RecJ homologs. The purified protein exhibits a process 5'-3' single-stranded-DNA-specific exonuclease activity. The exonuclease activity of H. influenzae RecJ (HiRecJ) was supported by Mg2+ or Mn2+ and inhibited by Cd2+ suggesting a different mode of metal binding in HiRecJ as compared to Escherichia coli RecJ (EcoRecJ). Site-directed mutagenesis of highly conserved residues in HiRecJ abolished enzymatic activity. Interestingly, substitution of alanine for aspartate 77 resulted in a catalytically inactive enzyme that bound to DNA with a significantly higher affinity as compared to the wild-type enzyme. Noticeably, steady-state kinetic studies showed that H. influenzae single-stranded DNA-binding protein (HiSSB) increased the affinity of HiRecJ for single-stranded DNA and stimulated its exonuclease activity. HiSSB, whose C-terminal tail had been deleted, failed to enhance RecJ exonuclease activity. More importantly, HiRecJ was found to directly associate with its cognate single-stranded DNA-binding protein (SSB), as demonstrated by various in vitro assays, Interaction studies carried out with the truncated variants of HiRecJ and HiSSB revealed that the two proteins interact via the C-terminus of SSB protein and the core-catalytic domain of RecJ. Taken together, these results emphasize direct interactio between RecJ and SSB, which confers functional cooperativity to these two proteins. In addition, these results implicate SSB as being involved in the recruitment of RecJ to DNA and provide insights into the interplay between these proteins in repair and recombination pathways.
Resumo:
In our earlier work ([1]) we proposed WLAN Manager (or WM) a centralised controller for QoS management of infrastructure WLANs based on the IEEE 802.11 DCF standards. The WM approach is based on queueing and scheduling packets in a device that sits between all traffic flowing between the APs and the wireline LAN, requires no changes to the AP or the STAs, and can be viewed as implementing a "Split-MAC" architecture. The objectives of WM were to manage various TCP performance related issues (such as the throughput "anomaly" when STAs associate with an AP with mixed PHY rates, and upload-download unfairness induced by finite AP buffers), and also to serve as the controller for VoIP admission control and handovers, and for other QoS management measures. In this paper we report our experiences in implementing the proposals in [1]: the insights gained, new control techniques developed, and the effectiveness of the WM approach in managing TCP performance in an infrastructure WLAN. We report results from a hybrid experiment where a physical WM manages actual TCP controlled packet flows between a server and clients, with the WLAN being simulated, and also from a small physical testbed with an actual AP.
Resumo:
Thermodynamic analysis of carbohydrate binding by Artocarpus integrifolia (jackfruit) agglutinin (jacalin) shows that, among monosaccharides, Me alpha GalNAc (methyl-alpha-N-acetylgalactosamine) is the strongest binding ligand. Despite its strong affinity for Me alpha GalNAc and Me alpha Gal, the lectin binds very poorly when Gal and GalNAc are in alpha-linkage with other sugars such as in A- and B-blood-group trisaccharides, Gal alpha 1-3Gal and Gal alpha 1-4Gal. These binding properties are explained by considering the thermodynamic parameters in conjunction with the minimum energy conformations of these sugars. It binds to Gal beta 1-3GalNAc alpha Me with 2800-fold stronger affinity over Gal beta 1-3GalNAc beta Me. It does not bind to asialo-GM1 (monosialoganglioside) oligosaccharide. Moreover, it binds to Gal beta 1-3GalNAc alpha Ser, the authentic T (Thomsen-Friedenreich)-antigen, with about 2.5-fold greater affinity as compared with Gal beta 1-3GalNAc. Asialoglycophorin A was found to be about 169,333 times stronger an inhibitor than Gal beta 1-3GalNAc. The present study thus reveals the exquisite specificity of A. integrifolia lectin for the T-antigen. Appreciable binding of disaccharides Glc beta 1-3GalNAc and GlcNAc beta 1-3Gal and the very poor binding of beta-linked disaccharides, which instead of Gal and GalNAc contain other sugars at the reducing end, underscore the important contribution made by Gal and GalNAc at the reducing end for recognition by the lectin. The ligand-structure-dependent alterations of the c.d. spectrum in the tertiary structural region of the protein allows the placement of various sugar units in the combining region of the lectin. These studies suggest that the primary subsite (subsite A) can accommodate only Gal or GalNAc or alpha-linked Gal or GalNAc, whereas the secondary subsite (subsite B) can associate either with GalNAc beta Me or Gal beta Me. Considering these factors a likely arrangement for various disaccharides in the binding site of the lectin is proposed. Its exquisite specificity for the authentic T-antigen, Gal beta 1-3GalNAc alpha Ser, together with its virtual non-binding to A- and B-blood-group antigens, Gal beta 1-3GalNAc beta Me and asialo-GM1 should make A. integrifolia lectin a valuable probe for monitoring the expression of T-antigen on cell surfaces.
Resumo:
In this paper, we study the performance of client-Access Point (AP) association policies in IEEE 802.11 based WLANs. In many scenarios, clients have a choice of APs with whom they can associate. We are interested in finding association policies which lead to optimal system performance. More specifically, we study the stability of different association policies as a function of the spatial distribution of arriving clients. We find for each policy the range of client arrival rates for which the system is stable. For small networks, we use Lyapunov function methods to formally establish the stability or instability of certain policies in specific scenarios. The RAT heuristic policy introduced in our prior work is shown to have very good stability properties when compared to several other natural policies. We also validate our analytical results by detailed simulation employing the IEEE 802.11 MAC.
Resumo:
In many IEEE 802.11 WLAN deployments, wireless clients have a choice of access points (AP) to connect to. In current systems, clients associate with the access point with the strongest signal to noise ratio. However, such an association mechanism can lead to unequal load sharing, resulting in diminished system performance. In this paper, we first provide a numerical approach based on stochastic dynamic programming to find the optimal client-AP association algorithm for a small topology consisting of two access points. Using the value iteration algorithm, we determine the optimal association rule for the two-AP topology. Next, utilizing the insights obtained from the optimal association ride for the two-AP case, we propose a near-optimal heuristic that we call RAT. We test the efficacy of RAT by considering more realistic arrival patterns and a larger topology. Our results show that RAT performs very well in these scenarios as well. Moreover, RAT lends itself to a fairly simple implementation.
Resumo:
ingle tract guanine residues can associate to form stable parallel quadruplex structures in the presence of certain cations. Nanosecond scale molecular dynamics simulations have been performed on fully solvated fibre model of parallel d(G(7)) quadruplex structures with Na+ or K+ ions coordinated in the cavity formed by the O6 atoms of the guanine bases. The AMBER 4.1 force field and Particle Mesh Ewald technique for electrostatic interactions have been used in all simulations. There quadruplex structures are stable during the simulation, with the middle four base tetrads showing root mean square deviation values between 0.5 to 0.8 Angstrom from the initial structure as well the high resolution crystal structure. Even in the absence of any coordinated ion in the initial structure, the G-quadruplex structure remains intact throughout the simulation. During the 1.1 ns MD simulation, one Nai counter ion from the solvent as well as several water molecules enter the central cavity to occupy the empty coordination sites within the parallel quadruplex and help stabilize the structure. Hydrogen bonding pattern depends on the nature of the coordinated ion, with the G-tetrad undergoing local structural variation to accommodate cations of different sizes. in the absence of any coordinated ion. due to strong mutual repulsion, O6 atoms within G-tetrad are forced farther apart from each other, which leads to a considerably different hydrogen bonding scheme within the G-tetrads and very favourable interaction energy between the guanine bases constituting a G-tetrad. However, a coordinated ion between G-tetrads provides extra stacking energy for the G-tetrads and makes the quadruplex structure more rigid. Na+ ions, within the quadruplex cavity, are more mobile than coordinated K+ ions. A number of hydrogen bonded water molecules are observed within the grooves of all quadruplex structures.
Resumo:
Guanylyl cyclase C (GCC) is the receptor for the family of guanylin peptides and bacterial heat-stable enterotoxins (ST). The receptor is composed of an extracellular, ligand-binding domain and an intracellular domain with a region of homology to protein kinases and a guanylyl cyclase catalytic domain. We have expressed the entire intracellular domain of GCC in insect cells and purified the recombinant protein, GCC-IDbac, to study its catalytic activity and regulation. Kinetic properties of the purified protein were similar to that of full-length GCC, and high activity was observed when MnGTP was used as the substrate. Nonionic detergents, which stimulate the guanylyl cyclase activity of membrane-associated GCC, did not appreciably increase the activity of GCC-IDbac, indicating that activation of the receptor by Lubrol involved conformational changes that required the transmembrane and/or the extracellular domain. The guanylyl cyclase activity of GCC-IDbac was inhibited by Zn2+, at concentrations shown to inhibit adenylyl cyclase, suggesting a structural homology between the two enzymes. Covalent crosslinking of GCC-IDbac indicated that the protein could associate as a dimer, but a large fraction was present as a trimer. Gel filtration analysis also showed that the major fraction of the protein eluted at a molecular size of a trimer, suggesting that the dimer detected by cross-linking represented subtle differences in the juxtaposition of the individual polypeptide chains. We therefore provide evidence that the trimeric state of GCC is catalytically active, and sequences required to generate the trimer are present in the intracellular domain of GCC.
Resumo:
The associated model for binary systems has been modified to include volume effects and excess entropy arising from preferential interactions between the associate and the free atoms or between the free atoms. Equations for thermodynamic mixing functions have been derived. An optimization procedure using a modified conjugate gradient method has been used to evaluate the enthalpy and entropy interaction energies, the free energy of dissociation of the complex, its temperature dependance and the size of the associate. An expression for the concentration—concentration structure factor [Scc (0)] has been deduced from the modified associated solution model. The analysis has been applied to the thermodynamic mixing functions of liquid Ga-Te alloys at 1120 K, believed to contain Ga2Te3 associates. It is observed that the modified associated solution model incorporating volume effects and terms for the temperature dependance of interaction energies, describes the thermodynamic properties of Ga-Te system satisfactorily.
Resumo:
An algebraic generalization of the well-known binary q-function array to a multivalued q-function array is presented. It is possible to associate tree-structure realizations for binary q-functions and multivalued q-functions. Synthesis of multivalued functions using this array is very simple
Resumo:
Single tract guanine residues can associate to form stable parallel quadruplex structures in the presence of certain cations. Nanosecond scale molecular dynamics simulations have been performed on fully solvated fibre model of parallel d(G7) quadruplex structures with Na+ or K+ ions coordinated in the cavity formed by the 06 atoms of the guanine bases. The AMBER 4.1 force field and Particle Mesh Ewald technique for electrostatic interactions have been used in all simulations. These quadruplex structures are stable during the simulation, with the middle four base tetrads showing root mean square deviation values between 0.5 to 0.8 A from the initial structure as well the high resolution crystal structure. Even in the absence of any coordinated ion in the initial structure, the G-quadruplex structure remains intact throughout the simulation. During the 1.1 ns MD simulation, one Na+ counter ion from the solvent as well as several water molecules enter the central cavity to occupy the empty coordination sites within the parallel quadruplex and help stabilize the structure. Hydrogen bonding pattern depends on the nature of the coordinated ion, with the G-tetrad undergoing local structural variation to accommodate cations of different sizes. In the absence of any coordinated ion, due to strong mutual repulsion, 06 atoms within G-tetrad are forced farther apart from each other, which leads to a considerably different hydrogen bonding scheme within the G-tetrads and very favourable interaction energy between the guanine bases constituting a G-tetrad. However, a coordinated ion between G-tetrads provides extra stacking energy for the G-tetrads and makes the quadruplex structure more rigid. Na+ ions, within the quadruplex cavity, are more mobile than coordinated K+ ions. A number of hydrogen bonded water molecules are observed within the grooves of all quadruplex structures
Resumo:
The evolution with increasing Coulomb correlations of a semiconductor to a magnetic insulator is related to an excited-state crossover in pi-electron models for conjugated polymers. We associate strong fluorescence with a lowest singlet excitation S1 that is dipole allowed, on the band side, while S1 becomes two-photon allowed on the correlated side. S1/S2 crossovers in Hubbard, Pariser-Parr-Pople, or other chains with electron-hole symmetry and alternating transfer integral t(1 +/- delta) are based on exact results at delta=0 and 1, on molecular exciton theory at large delta, and on oligomer calculations up to twelve sites.
Resumo:
In this paper we associate a new geometric invariant to the space of fiat connections on a G (= SU(2))-bundle on a compact Riemann surface M and relate it tcr the symplectic structure on the space Hom(pi(1)(M), G)/G consisting of representations of the fundamental group pi(1)(M) Of M into G module the conjugate action of G on representations.
Resumo:
In social selection the phenotype of an individual depends on its own genotype as well as on the phenotypes, and so genotypes, of other individuals. This makes it impossible to associate an invariant phenotype with a genotype: the social context is crucial. Descriptions of metazoan development, which often is viewed as the acme of cooperative social behaviour, ignore or downplay this fact. The implicit justification for doing so is based on a group-selectionist point of view. Namely, embryos are clones, therefore all cells have the same evolutionary interest, and the visible differences between cells result from a common strategy. The reasoning is flawed, because phenotypic heterogeneity within groups can result from contingent choices made by cells from a flexible repertoire as in multicellular development. What makes that possible is phenotypic plasticity, namely the ability of a genotype to exhibit different phenotypes. However, co-operative social behaviour with division of labour requires that different phenotypes interact appropriately, not that they belong to the same genotype, or have overlapping genetic interests. We sketch a possible route to the evolution of social groups that involves many steps: (a) individuals that happen to be in spatial proximity benefit simply by virtue of their number; (b) traits that are already present act as preadaptations and improve the efficiency of the group; and (c) new adaptations evolve under selection in the social context-that is, via interactions between individuals-and further strengthen group behaviour. The Dictyostelid or cellular slime mould amoebae (CSMs) become multicellular in an unusual way, by the aggregation of free-living cells. In nature the resulting group can be genetically homogeneous (clonal) or heterogeneous (polyclonal); in either case its development, which displays strong cooperation between cells (to the extent of so-called altruism) is not affected. This makes the CSMs exemplars for the study of social behaviour.
Resumo:
An understanding of application I/O access patterns is useful in several situations. First, gaining insight into what applications are doing with their data at a semantic level helps in designing efficient storage systems. Second, it helps create benchmarks that mimic realistic application behavior closely. Third, it enables autonomic systems as the information obtained can be used to adapt the system in a closed loop.All these use cases require the ability to extract the application-level semantics of I/O operations. Methods such as modifying application code to associate I/O operations with semantic tags are intrusive. It is well known that network file system traces are an important source of information that can be obtained non-intrusively and analyzed either online or offline. These traces are a sequence of primitive file system operations and their parameters. Simple counting, statistical analysis or deterministic search techniques are inadequate for discovering application-level semantics in the general case, because of the inherent variation and noise in realistic traces.In this paper, we describe a trace analysis methodology based on Profile Hidden Markov Models. We show that the methodology has powerful discriminatory capabilities that enable it to recognize applications based on the patterns in the traces, and to mark out regions in a long trace that encapsulate sets of primitive operations that represent higher-level application actions. It is robust enough that it can work around discrepancies between training and target traces such as in length and interleaving with other operations. We demonstrate the feasibility of recognizing patterns based on a small sampling of the trace, enabling faster trace analysis. Preliminary experiments show that the method is capable of learning accurate profile models on live traces in an online setting. We present a detailed evaluation of this methodology in a UNIX environment using NFS traces of selected commonly used applications such as compilations as well as on industrial strength benchmarks such as TPC-C and Postmark, and discuss its capabilities and limitations in the context of the use cases mentioned above.
Resumo:
We associate a sheaf model to a class of Hilbert modules satisfying a natural finiteness condition. It is obtained as the dual to a linear system of Hermitian vector spaces (in the sense of Grothendieck). A refined notion of curvature is derived from this construction leading to a new unitary invariant for the Hilbert module. A division problem with bounds, originating in Douady's privilege, is related to this framework. A series of concrete computations illustrate the abstract concepts of the paper.