14 resultados para Ernst, Duke of Brunswick-Lüneburg, 1497-1546.
em Indian Institute of Science - Bangalore - Índia
Resumo:
The authors study the trajectories of charged particles in Ernst's space-time representing a static black hole immersed in a magnetic field. They find bound orbits always exist for realistic magnetic field strengths. A similar investigation is carried out for the case of Melvin's magnetic universe and for a corresponding test field superposed on a flat space-time.
Resumo:
The crystal structure of TANDEM (des-N-tetramethyltriostin A), a synthetic analogue of the quinoxaline antibiotic triostin A, has been determined independently at -135 and 7 'C and refined to R values of 0.088 and 0.147, respectively. The molecule has approximate 2-fold symmetry, with the quinoxaline chromophores and the disulfide cross-bridge projecting from opposite sides of the peptide ring. The quinoxaline groups are nearly parallel to each other and separated by about 6.5 A. The peptide backbone resembles a distorted antiparallel 13 ribbon joined by intramolecular hydrogen bonds N-H(LVal)--O(L-Ala). At low temperatures, the TANDEM molecule is surrounded by a regular first- and second-order hydration sphere containing 14 independent water molecules. At room temperature, only the first-order hydration shell is maintained. Calculations of the interplanar separation of the quinoxaline groups as a function of their orientation with respect to the peptide ring support the viability of TANDEM to intercalate bifunctionally into DNA.
Resumo:
We compare magnetovolume effects in bulk and nanoparticles by performing Monte Carlo simulations of a spin-analogous model with coupled spatial and magnetic degrees of freedom and chemical disorder. We find that correlations between surface and bulk atoms lead with decreasing particle size to a substantial modification of the magnetic and elastic behavior at low temperatures.
Resumo:
Active-clamp dc-dc converters are pulsewidth-modulated converters having two switches featuring zero-voltage switching at frequencies beyond 100 kHz. Generalized equivalent circuits valid for steady-state and dynamic performance have been proposed for the family of active-clamp converters. The active-clamp converter is analyzed for its dynamic behavior under current control in this paper. The steady-state stability analysis is presented. On account of the lossless damping inherent in the active-clamp converters, it appears that the stability region in the current-controlled active-clamp converters get extended for duty ratios, a little greater than 0.5, unlike in conventional hard-switched converters. The conventional graphical approach fails to assess the stability of current-controlled active-clamp converters due to the coupling between the filter inductor current and resonant inductor current. An analysis that takes into account the presence of the resonant elements is presented to establish the condition for stability. This method correctly predicts the stability of the current-controlled active-clamp converters. A simple expression for the maximum duty cycle for subharmonic free operation is obtained. The results are verified experimentally.
Resumo:
Four isomeric dialdehydes 4, readily available from cycloaddition of propiolic aldehyde (2) to 1,2,4,5-hexatetraene (1), were separated by chromatography and recrystallization, and were characterized by their spectroscopic data. The individual isomers can now be easily identified from their H-1 NMR spectra even if only one of them is present.
Resumo:
Starting from the early decades of the twentieth century, evolutionary biology began to acquire mathematical overtones. This took place via the development of a set of models in which the Darwinian picture of evolution was shown to be consistent with the laws of heredity discovered by Mendel. The models, which came to be elaborated over the years, define a field of study known as population genetics. Population genetics is generally looked upon as an essential component of modern evolutionary theory. This article deals with a famous dispute between J. B. S. Haldane, one of the founders of population genetics, and Ernst Mayr, a major contributor to the way we understand evolution. The philosophical undercurrents of the dispute remain relevant today. Mayr and Haldane agreed that genetics provided a broad explanatory framework for explaining how evolution took place but differed over the relevance of the mathematical models that sought to underpin that framework. The dispute began with a fundamental issue raised by Mayr in 1959: in terms of understanding evolution, did population genetics contribute anything beyond the obvious? Haldane's response came just before his death in 1964. It contained a spirited defense, not just of population genetics, but also of the motivations that lie behind mathematical modelling in biology. While the difference of opinion persisted and was not glossed over, the two continued to maintain cordial personal relations.
Resumo:
Epoxy systems containing HTBN rubber material and reinforced with E-glass fibres, exposed to a fixed time duration in three separate media were subjected to compressive mode of deformation. The yield stress and fractographic features noted on the compression failed samples are reported in this work. The experiment reveals that the seawater exposed sample exhibits a drop in strength compared to dry (unexposed) sample. This kind of drop is maintained if the media is changed from seawater to distilled water. When HCl is included in seawater. the experiment shows a small rise in strength value. These changes have been attributed to various factors like medium ingress into samples assisting interface failure, the larger-sized Cl- influencing the extent of diffusion of medium into system and finally their participation in the deformation phenomena. The fractographic features reveal interface separations that show either scattered debris or a cleaner surface or display a whitish-coated matrix region depending on whether the tests are done on unexposed samples or on ones following the immersion in the media.
Resumo:
Several studies on molecular profiling of oligodendrogliomas (OGs) in adults have shown a distinctive genetic pattern characterized by combined deletions of chromosome arms 1 p and 19q, O6-methylguanine-methyltransferase (MGMT) methylation, and isocitrate dehydrogenase 1 (IDH1) mutation, which have potential diagnostic, prognostic, and even therapeutic relevance. OGs in pediatric and young adult patients are rare and have been poorly characterized on a molecular and biological basis, and it remains uncertain whether markers with prognostic significance in adults also have predictive value in these patients. Fourteen cases of OGs in young patients (age, <= 25 years) who received a diagnosis over 7 years were selected (7 pediatric patients age <= 18 years and 7 young adults aged 19-25 years). The cases were evaluated for 1p/19q status, MGMT promoter methylation, p53 mutation, and IDH1 mutation. None of the pediatric cases showed 1p/19q deletion. In young adults, combined 1p/19q loss was observed in 57% and isolated 1p loss in 14% of cases. The majority of cases in both subgroups (71% in each) harbored MGMT gene promoter methylation. TP53 and IDH1 mutations were not seen in any of the cases in both the groups. To our knowledge, this is the first study to show that molecular profile of OGs in pediatric and young adult patients is distinct. Further large-scale studies are required to identify additional clinically relevant genetic alterations in this group of patients.
Resumo:
Glasses of the composition 0.20 Bi2O3 - 0.30 TiO2 - 0.50 SrB4O7 and 0.30 Bi2O3 - 0.45 TiO2 - 0.25 SrB4O7 have been fabricated by conventional glass processing technique. These glasses have been characterized using X-ray powder diffraction (XRD), differential thermal analysis (DTA) and high resolution transmission electron microscopy (HRTEM). The frequency response of the dielectric constant and the loss tangent of these glasses has been studied. The formation of the crystalline bismuth titanate, Bi4Ti3O12 (BiT) phase in the heat treated samples has been confirmed by XRD and HRTEM studies. The measured ET Of the glass-ceramics are found to be in good agreement with those predicted by the logarithmic mixture rule. Optical second harmonic generation (SHG) at 1064 nm has been observed in the heat treated samples and is attributed to the formation of crystalline Bi4Ti3O12 (BiT) phase in the SrB4O7 (SBO) matrix.
Resumo:
The evolution of microstructure and texture in commercially pure titanium has been studied as a function of strain path during rolling using experimental techniques and viscoplastic self-consistent simulations. Four different strain paths, namely unidirectional rolling, two-step cross rolling, multistep cross rolling, and reverse rolling, have been employed to decipher the effect of strain path change on the evolution of deformation texture and microstructure. The cross-rolled samples show higher hardness with lower microstrain and intragranular misorientation compared to the unidirectional rolled sample as determined from X-ray diffraction and electron backscatter diffraction, respectively. The higher hardness of the cross-rolled samples is attributed to orientation hardening due to the near basal texture. Viscoplastic self-consistent simulations are able to successfully predict the texture evolution of the differently rolled samples. Simulation results indicate the higher contribution of basal slip in the formation of near basal texture and as well as lower intragranular misorientation in the cross-rolled samples.
Resumo:
Lead Telluride (PbTe) with bismuth secondary phase embedded in the bulk has been prepared by matrix encapsulation technique. X-Ray Diffraction results indicated crystalline PbTe, while Rietveld analysis showed that Bi did not substitute at either Pb or Te site, which was further confirmed by Raman and X-Ray Photoelectron Spectroscopy. Scanning Electron Microscopy showed the expected presence of a secondary phase, while Energy Dispersive Spectroscopy results showed a slight deficiency of tellurium in the PbTe matrix, which might have occurred during synthesis due to higher vapor pressure of Te. Transmission Electron Microscopy results did not show any nanometer sized Bi phase. Seebeck coefficient (S) and electrical conductivity (sigma) were measured from room temperature to 725 K. A decrease in S and sigma with increasing Bi content showed an increased scattering of electrons from PbTe-Bi interfaces, along with a possible electron acceptor role of Bi secondary phase. An overall decrease in the power factor was thus observed. Thermal conductivity, measured from 400K to 725K, was smaller at starting temperature with increasing Bi concentration, and almost comparable to that of PbTe at higher temperatures, indicating a more important role of electrons as compared to phonons at PbTe-Bi interfaces. Still, a reasonable zT of 0.8 at 725K was achieved for undoped PbTe, but no improvement was found for bismuth added samples with micrometer inclusions. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4796148]
Resumo:
Quinary chalcogenide compounds Cu2.1Zn0.9Sn1-xInxSe4 (0 <= x <= 0.1) were prepared by melting (1170K) followed by annealing (773 K) for 172 h. Powder X-ray diffraction (XRD) data accompanied by electron probe microanalysis (EPMA) and Raman spectra of all the samples confirmed the formation of a tetragonal kesterite structure with Cu2FeSnS4-type. The thermoelectric properties of all the samples were measured as a function of temperature in the range of 300-780K. The electrical resistivity of all the samples exhibits metallic-like behavior. The positive values of the Seebeck coefficient and the Hall coefficient reveal that holes are the majority charge carriers. The codoping of copper and indium leads to a significant increase of the electrical resistivity and the Seebeck coefficient as a function of temperature above 650 K. The thermal conductivity of all the samples decreases with increasing temperature. Lattice thermal conductivity is not significantly modified as the doping content may infer negligible mass fluctuation scattering for copper/zinc and indium/tin substitution. Even though, the power factors (S-2/rho) of indium-doped samples Cu2.1Zn0.9Sn1-xInxSe4 (x = 0.05, 0.075) are almost the same, the maximum zT = 0.45 at 773K was obtained for Cu2.1Zn0.9Sn0.925In0.075Se4 due to its smaller value of thermal conductivity. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
Precise control of supercoiling homeostasis is critical to DNA-dependent processes such as gene expression, replication, and damage response. Topoisomerases are central regulators of DNA supercoiling commonly thought to act independently in the recognition and modulation of chromosome superstructure; however, recent evidence has indicated that cells tightly regulate topoisomerase activity to support chromosome dynamics, transcriptional response, and replicative events. How topoisomerase control is executed and linked to the internal status of a cell is poorly understood. To investigate these connections, we determined the structure of Escherichia coil gyrase, a type HA topoisomerase bound to YacG, a recently identified chromosomally encoded inhibitor protein. Phylogenetic analyses indicate that YacG is frequently associated with coenzyme A (CoA) production enzymes, linking the protein to metabolism and stress. The structure, along with supporting solution studies, shows that YacG represses gyrase by sterically occluding the principal DNA-binding site of the enzyme. Unexpectedly, YacG acts by both engaging two spatially segregated regions associated with small-molecule inhibitor interactions (fluoroquinolone antibiotics and the newly reported antagonist GSK299423) and remodeling the gyrase holo enzyme into an inactive, ATP-trapped configuration. This study establishes a new mechanism for the protein-based control of topoisomerases, an approach that may be used to alter supercoiling levels for responding to changes in cellular state.
Resumo:
Tetrahedrite compounds Cu12-xMnxSb4S13 (0 <= x <= 1.8) were prepared by solid state synthesis. A detailed crystal structure analysis of Cu10.6Mn1.4Sb4S13 was performed by single crystal X-ray diffraction (XRD) at 100, 200 and 300 K confirming the noncentrosymmetric structure (space group I (4) over bar 3m) of a tetrahedrite. The large atomic displacement parameter of the Cu2 atoms was described by splitting the 12e site into a partially and randomly occupied 24g site (Cu22) in addition to the regular 12e site (Cu21), suggesting a mix of dynamic and static off-plane Cu2 atom disorder. Rietveld powder XRD pattern and electron probe microanalysis revealed that all the Mn substituted samples showed a single tetrahedrite phase. The electrical resistivity increased with increasing Mn due to substitution of Mn2+ at the Cu1+ site. The positive Seebeck coefficient for all samples indicates that the dominant carriers are holes. Even though the thermal conductivity decreased as a function of increasing Mn, the thermoelectric figure of merit ZT decreased, because the decrease of the power factor is stronger than the decrease of the thermal conductivity. The maximum ZT = 0.76 at 623 K is obtained for Cu12Sb4S13. The coefficient of thermal expansion 13.5 +/- 0.1 x 10(-6) K-1 is obtained in the temperature range from 460 K to 670 K for Cu10.2Mn1.8Sb4S13. The Debye temperature, Theta(D) = 244 K for Cu10.2Mn1.8Sb4S13, was estimated from an evaluation of the elastic properties. The effective paramagnetic moment 7.45 mu(B)/f.u. for Cu10.2Mn1.8Sb4S13 is fairly consistent with a high spin 3d(5) ground state of Mn.