120 resultados para Equilibrium and stability analysis
em Indian Institute of Science - Bangalore - Índia
Resumo:
A method for total risk analysis of embankment dams under earthquake conditions is discussed and applied to the selected embankment dams, i.e., Chang, Tapar, Rudramata, and Kaswati located in the Kachchh region of Gujarat, India, to obtain the seismic hazard rating of the dam site and the risk rating of the structures. Based on the results of the total risk analysis of the dams, coupled non-linear dynamic numerical analyses of the dam sections are performed using acceleration time history record of the Bhuj (India) earthquake as well as five other major earthquakes recorded worldwide. The objective of doing so is to perform the numerical analysis of the dams for the range of amplitude, frequency content and time duration of input motions. The deformations calculated from the numerical analyses are also compared with other approaches available in literature, viz, Makdisi and Seed (1978) approach, Jansen's approach (1990), Swaisgood's method (1995), Bureau's method (1997). Singh et al. approach (2007), and Saygili and Rathje approach (2008) and the results are utilized to foresee the stability of dams in future earthquake scenario. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We consider the rotational motion of an elongated nanoscale object in a fluid under an external torque. The experimentally observed dynamics could be understood from analytical solutions of the Stokes equation, with explicit formulae derived for the dynamical states as a function of the object dimensions and the parameters defining the external torque. Under certain conditions, multiple analytical solutions to the Stokes equations exist, which have been investigated through numerical analysis of their stability against small perturbations and their sensitivity towards initial conditions. These experimental results and analytical formulae are general enough to be applicable to the rotational motion of any isolated elongated object at low Reynolds numbers, and could be useful in the design of non-spherical nanostructures for diverse applications pertaining to microfluidics and nanoscale propulsion technologies.
Resumo:
In recent years, spatial variability modeling of soil parameters using random field theory has gained distinct importance in geotechnical analysis. In the present Study, commercially available finite difference numerical code FLAC 5.0 is used for modeling the permeability parameter as spatially correlated log-normally distributed random variable and its influence on the steady state seepage flow and on the slope stability analysis are studied. Considering the case of a 5.0 m high cohesive-frictional soil slope of 30 degrees, a range of coefficients of variation (CoV%) from 60 to 90% in the permeability Values, and taking different values of correlation distance in the range of 0.5-15 m, parametric studies, using Monte Carlo simulations, are performed to study the following three aspects, i.e., (i) effect ostochastic soil permeability on the statistics of seepage flow in comparison to the analytic (Dupuit's) solution available for the uniformly constant permeability property; (ii) strain and deformation pattern, and (iii) stability of the given slope assessed in terms of factor of safety (FS). The results obtained in this study are useful to understand the role of permeability variations in slope stability analysis under different slope conditions and material properties. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a new approach to the location of fault in the high voltage power transmission system using Support Vector Machines (SVMs). A knowledge base is developed using transient stability studies for apparent impedance swing trajectory in the R-X plane. SVM technique is applied to identify the fault location in the system. Results are presented on sample 3-power station, a 9-bus system illustrate the implementation of the proposed method.
Resumo:
Molecular Dynamics (MD) simulations provide an atomic level account of the molecular motions and have proven to be immensely useful in the investigation of the dynamical structure of proteins. Once an MD trajectory is obtained, specific interactions at the molecular level can be directly studied by setting up appropriate combinations of distance and angle monitors. However, if a study of the dynamical behavior of secondary structures in proteins becomes important, this approach can become unwieldy. We present herein a method to study the dynamical stability of secondary structures in proteins, based on a relatively simple analysis of backbone hydrogen bonds. The method was developed for studying the thermal unfolding of beta-lactamases, but can be extended to other systems and adapted to study relevant properties.
Resumo:
The phase relations in the system Cu-Ho-O have been determined at 1300 K using X-ray diffraction, optical microscopy, and electron microprobe analysis of samples equilibrated in evacuated quartz ampules and in pure oxygen. Only one ternary compound, Cu2Ho2O5, was found to be stable. The Gibbs free energy of formation of this compound has been measured using the solid-state cell Pt,Cu2O + Cu2Ho2O5 + Ho2O3/(Y2O3)ZrO2/CuO + Cu2O,Pt in the temperature range of 973 to 1350 K. For the formation of Cu2Ho2O5 from its binary component oxides, 2CuO(s) + Ho2O3(S) --> Cu2Ho2O5(s) DELTAG-degrees = 11190 - 13.8T(+/- 120) J-mol-1 Since the formation is endothermic, CU2Ho2O5 becomes thermodynamically unstable with respect to CuO and Ho2O3 below 810 K. When the oxygen partial pressure over Cu2Ho2O5 is lowered, it decomposes according to the reaction 2Cu2Ho2O5(s) --> 2Ho2O3(s) + 2Cu2O(S) + O2(g) for which the equilibrium oxygen potential is given by DELTAmu(O2) = - 238510 + 160.2T(+/- 450) J.mol-1 The decomposition temperature at an oxygen partial pressure of 1.52 x 10(4) Pa was measured using a combined DTA-TGA apparatus. Based on these results, an oxygen potential diagram for the system Cu-Ho-O at 1300 K is presented.
Resumo:
Floquet analysis is widely used for small-order systems (say, order M < 100) to find trim results of control inputs and periodic responses, and stability results of damping levels and frequencies, Presently, however, it is practical neither for design applications nor for comprehensive analysis models that lead to large systems (M > 100); the run time on a sequential computer is simply prohibitive, Accordingly, a massively parallel Floquet analysis is developed with emphasis on large systems, and it is implemented on two SIMD or single-instruction, multiple-data computers with 4096 and 8192 processors, The focus of this development is a parallel shooting method with damped Newton iteration to generate trim results; the Floquet transition matrix (FTM) comes out as a byproduct, The eigenvalues and eigenvectors of the FTM are computed by a parallel QR method, and thereby stability results are generated, For illustration, flap and flap-lag stability of isolated rotors are treated by the parallel analysis and by a corresponding sequential analysis with the conventional shooting and QR methods; linear quasisteady airfoil aerodynamics and a finite-state three-dimensional wake model are used, Computational reliability is quantified by the condition numbers of the Jacobian matrices in Newton iteration, the condition numbers of the eigenvalues and the residual errors of the eigenpairs, and reliability figures are comparable in both the parallel and sequential analyses, Compared to the sequential analysis, the parallel analysis reduces the run time of large systems dramatically, and the reduction increases with increasing system order; this finding offers considerable promise for design and comprehensive-analysis applications.
Resumo:
We consider a system comprising a finite number of nodes, with infinite packet buffers, that use unslotted ALOHA with Code Division Multiple Access (CDMA) to share a channel for transmitting packetised data. We propose a simple model for packet transmission and retransmission at each node, and show that saturation throughput in this model yields a sufficient condition for the stability of the packet buffers; we interpret this as the capacity of the access method. We calculate and compare the capacities of CDMA-ALOHA (with and without code sharing) and TDMA-ALOHA; we also consider carrier sensing and collision detection versions of these protocols. In each case, saturation throughput can be obtained via analysis pf a continuous time Markov chain. Our results show how saturation throughput degrades with code-sharing. Finally, we also present some simulation results for mean packet delay. Our work is motivated by optical CDMA in which "chips" can be optically generated, and hence the achievable chip rate can exceed the achievable TDMA bit rate which is limited by electronics. Code sharing may be useful in the optical CDMA context as it reduces the number of optical correlators at the receivers. Our throughput results help to quantify by how much the CDMA chip rate should exceed the TDMA bit rate so that CDMA-ALOHA yields better capacity than TDMA-ALOHA.
Resumo:
The stability of slopes is a major problem in geotechnical engineering. Of the methods available for the analysis of soil slopes such as limit equilibrium methods, limit analysis and numerical methods such as FEM and FDM, limit equilibrium methods are popular and generally used, owing to their simplicity in formulation and in evaluating the overall factor of safety of slope. However limit equilibrium methods possess certain disadvantages. They do not consider whether the slope is an embankment or natural slope or an excavation and ignore the effect of incremental construction, initial stress, stress strain behavior etc. In the work reported in this paper, a comparative study of actual state of stress and actual factor of safety and Bishop's factor of safety is performed. The actual factor of safety is obtained by consideration of contours of mobilised shear strains. Using Bishop's method of slices, the critical slip surfaces of a number of soil slopes with different geometries are determined and both the factors of safety are obtained. The actual normal stresses and shear stresses are determined from finite difference formulation using FLAG (Fast Lagrangian Analysis of Continuaa) with Mohr-Coulomb model. The comparative study is performed in terms of parameter lambda(c phi) (= gamma H tan phi/c). I is shown that actual factor of safety is higher than Bishop's factor of safety depending on slope angle and lambda(c phi).
Resumo:
Proper analysis for safe design of tailings earthen dam is necessary under static loading and more so under earthquake conditions to reduce damages of important geotechnical structure. This paper presents both static and seismic analyses of a typical section of tailings earthen dam constructed by downstream method and located at a site in eastern part India to store non-radioactive nuclear waste material. The entire analysis is performed using geotechnical softwares FLAC(3D) and TALREN 4. Results are obtained for various possible conditions of the reservoir to investigate the stability under both static and seismic loading condition using 1989 Loma Prieta earthquake acceleration-time history. FLAC(3D) analyses indicate the critical maximum displacement at crest of the proposed tailings dam section is 5.5 cm under the static loading but it increases to about 16.24 cm under seismic loading. The slope stability analyses provide the minimum value of factor of safety for seismic loading as 1.5 as compared to 2.31 for static loading. Amplification of base seismic acceleration is also observed. The liquefaction potential analysis in FLAC(3D) indicates considerable loss of shear strength in the tailings portion of the proposed earthen dam section with significantly high values of pore pressure ratio.
Resumo:
In this paper the seismic slope stability analyses are performed for a typical section of 44 m high water retention type tailings earthen dam located in the eastern part of India, using both the conventional pseudo-static and recent pseudo-dynamic methods. The tailings earthen dam is analyzed for different upstream conditions of reservoir like filled up with compacted and non-compacted dumped waste materials with different water levels of the pond tailings portion. Phreatic surface is generated using seepage analysis in geotechnical software SEEP/W and that same is used in the pseudo-static and pseudo-dynamic analyses to make the approach more realistic. The minimum values of factor of safety using pseudo-static and pseudo-dynamic method are obtained as 1.18 and 1.09 respectively for the chosen seismic zone in India. These values of factor of safety show clearly the demerits of conventional pseudo-static analysis compared to recent pseudo-dynamic analysis, where in addition to the seismic accelerations, duration, frequency of earthquake, body waves traveling during earthquake and amplification effects are considered.
Resumo:
Exponential compact higher-order schemes have been developed for unsteady convection-diffusion equation (CDE). One of the developed scheme is sixth-order accurate which is conditionally stable for the Peclet number 0 <= Pe <= 2.8 and the other is fourth-order accurate which is unconditionally stable. Schemes for two-dimensional (2D) problems are made to use alternate direction implicit (ADI) algorithm. Example problems are solved and the numerical solutions are compared with the analytical solutions for each case.
Resumo:
This paper describes an ab initio design and development of a novel Fiber Bragg Grating (FBG) sensor based strain sensing plate for the measurement of plantar strain distribution in human foot. The primary aim of this work is to study the feasibility of usage of FBG sensors in the measurement of plantar strain in the foot; in particular, to spatially resolve the strain distribution in the foot at different regions such as fore-foot, mid-foot and hind-foot. This study also provides a method to quantify and compare relative postural stability of different subjects under test; in addition, traditional accelerometers have been used to record the movements of center of gravity (second lumbar vertebra) of the subject and the results obtained have been compared against the outcome of the postural stability studies undertaken using the developed FBG plantar strain sensing plate. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
In the present study a versatile and efficient adsorbent with high adsorption capacity for adsorption of Congo red dye in aqueous solution at ambient temperature without adjusting any pH is presented over the Ag modified calcium hydroxyapatite (CaHAp). CaHAp and Ag-doped CaHAp materials were synthesized using facile aqueous precipitation method. The physico-chemical properties of the materials were determined by powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, Transmission electron microscopy (TEM), UV-Visible spectroscopy, N-2 physisorption and acidity was determined by n-butylamine titration and pyridine adsorption methods. XRD analysis confirmed all adsorbents exhibit hexagonal CaHAp structure with P6(3)/m space group. TEM analysis confirms the rod like morphology of the adsorbents and the average length of the rods were in the range of 40-45 nm. Pyridine adsorption results indicate increase in number of Lewis acid sites with Ag doping in CaHAp. Adsorption capacity of CaHAp was found increased with Ag content in the adsorbents. Ag (10): CaHAp adsorbent showed superior adsorption performance among all the adsorbents for various concentrations of Congo red (CR) dye in aqueous solutions. The amount of CR dye adsorbed on Ag (10): CaHAp was found to be 49.89-267.81 mg g(-1) for 50-300 ppm in aqueous solution. A good correlation between adsorption capacity and acidity of the adsorbents was observed. The adsorption kinetic data of adsorbents fitted well with pseudo second-order kinetic model with correlation coefficients ranged from 0.998 to 0.999. The equilibrium adsorption data was found to best fit to the Langmuir adsorption isotherm model. (C) 2015 Elsevier Inc. All rights reserved.