62 resultados para Epidemics spatial analysis
em Indian Institute of Science - Bangalore - Índia
Resumo:
Lentic ecosystems vital functions such as recycling of nutrients, purification of water, recharge of groundwater,augmenting and maintenance of stream flow and habitat provision for a wide variety of flora and fauna along with their recreation values necessitates their sustainable management through appropriate conservation mechanisms. Failure to restore these ecosystems will result in extinction of species or ecosystem types and cause permanent ecological damage. In Bangalore, lentic ecosystems (for example lakes) have played a prominent role serving the needs of agriculture and drinking water. But the burgeoning population accompanied by unplanned developmental activities has led to the drastic reduction in their numbers (from 262 in 1976 to 81). The existing water bodies are contaminated by residential, agricultural, commercial and industrial wastes/effluents. In order to restore the ecosystem, assessment of the level of contamination is crucial. This paper focuses on characterisation and restoration aspects of Varthur lake based on hydrological, morphometric, physical-chemical and socio-economic investigations for a period of six months covering post monsoon seasons. The results of the water quality analysis show that the lake is eutrophic with high concentrations of phosphorous and organic matter. The morphometric analysis indicates that the lake is shallow in relation to its surface area. Socio-economic analyses show dependence of local residents for irrigation, fodder, etc. These analyses highlight the need and urgency to restore the physical, chemical and biological integrity through viable restoration and sustainable watershed management strategies, which include pollution abatement, catchment treatment, desilting of the lake and educating all stakeholders on the conservation and restoration of lake ecosystems.
Resumo:
Urban growth identification, quantification, knowledge of rate and the trends of growth would help in regional planning for better infrastructure provision in environmentally sound way. This requires analysis of spatial and temporal data, which help in quantifying the trends of growth on spatial scale. Emerging technologies such as Remote Sensing, Geographic Information System (GIS) along with Global Positioning System (GPS) help in this regard. Remote sensing aids in the collection of temporal data and GIS helps in spatial analysis. This paper focuses on the analysis of urban growth pattern in the form of either radial or linear sprawl along the Bangalore - Mysore highway. Various GIS base layers such as builtup areas along the highway, road network, village boundary etc. were generated using collateral data such as the Survey of India toposheet, etc. Further, this analysis was complemented with the computation of Shannon's entropy, which helped in identifying prevalent sprawl zone, rate of growth and in delineating potential sprawl locations. The computation Shannon's entropy helped in delineating regions with dispersed and compact growth. This study reveals that the Bangalore North and South taluks contributed mainly to the sprawl with 559% increase in built-up area over a period of 28 years and high degree of dispersion. The Mysore and Srirangapatna region showed 128% change in built-up area and a high potential for sprawl with slightly high dispersion. The degree of sprawl was found to be directly proportional to the distances from the cities.
Resumo:
Spatial Decision Support System (SDSS) assist in strategic decision-making activities considering spatial and temporal variables, which help in Regional planning. WEPA is a SDSS designed for assessment of wind potential spatially. A wind energy system transforms the kinetic energy of the wind into mechanical or electrical energy that can be harnessed for practical use. Wind energy can diversify the economies of rural communities, adding to the tax base and providing new types of income. Wind turbines can add a new source of property value in rural areas that have a hard time attracting new industry. Wind speed is extremely important parameter for assessing the amount of energy a wind turbine can convert to electricity: The energy content of the wind varies with the cube (the third power) of the average wind speed. Estimation of the wind power potential for a site is the most important requirement for selecting a site for the installation of a wind electric generator and evaluating projects in economic terms. It is based on data of the wind frequency distribution at the site, which are collected from a meteorological mast consisting of wind anemometer and a wind vane and spatial parameters (like area available for setting up wind farm, landscape, etc.). The wind resource is governed by the climatology of the region concerned and has large variability with reference to space (spatial expanse) and time (season) at any fixed location. Hence the need to conduct wind resource surveys and spatial analysis constitute vital components in programs for exploiting wind energy. SDSS for assessing wind potential of a region / location is designed with user friendly GUI’s (Graphic User Interface) using VB as front end with MS Access database (backend). Validation and pilot testing of WEPA SDSS has been done with the data collected for 45 locations in Karnataka based on primary data at selected locations and data collected from the meteorological observatories of the India Meteorological Department (IMD). Wind energy and its characteristics have been analysed for these locations to generate user-friendly reports and spatial maps. Energy Pattern Factor (EPF) and Power Densities are computed for sites with hourly wind data. With the knowledge of EPF and mean wind speed, mean power density is computed for the locations with only monthly data. Wind energy conversion systems would be most effective in these locations during May to August. The analyses show that coastal and dry arid zones in Karnataka have good wind potential, which if exploited would help local industries, coconut and areca plantations, and agriculture. Pre-monsoon availability of wind energy would help in irrigating these orchards, making wind energy a desirable alternative.
Resumo:
We present new data on the strength of oceanic lithosphere along the Ninetyeast Ridge (NER) from two independent methods: spectral analysis (Bouguer coherence) using the fan wavelet transform technique, and spatial analysis (flexure inversion) with the convolution method. The two methods provide effective elastic thickness (T-e) patterns that broadly complement each other, and correlate well with known surface structures and regional-scale features. Furthermore, our study presents a new high resolution database on the Moho configuration, which obeys flexural isostasy, and exhibit regional correlations with the T-e variations. A continuous ridge structure with a much lower T-e value than that of normal oceanic lithosphere provides strong support for the hotspot theory. The derived T-e values vary over the northern (higher T-e similar to 10-20 km), central (anomalously low T-e similar to 0-5 km), and southern (low T-e similar to 5 km) segments of the NER. The lack of correlation of the T-e value with the progressive aging of the lithosphere implies differences in thermo-mechanical setting of the crust and underlying mantle in different parts of the NER, again indicating diversity in their evolution. The anomalously low T-e and deeper Moho (similar to 22 km) estimates of the central NER (between 0.5 degrees N and 17 degrees S) are attributed to the interaction of a hotspot with the Wharton spreading ridge that caused significant thermal rejuvenation and hence weakening of the lithosphere. The higher mechanical strength values in the northern NER (north of 0.5 degrees N) may support the idea of off-ridge emplacement and a relatively large plate motion at the time of volcanism. The low T-e and deeper Moho (similar to 22 km) estimates in the southern part (south of 17 degrees S) suggest that the lithosphere was weak and therefore younger at the time of volcanism, and this supports the idea that the southern NER was emplaced on the edge of the Indian plate. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
[1] Evaporative fraction (EF) is a measure of the amount of available energy at the earth surface that is partitioned into latent heat flux. The currently operational thermal sensors like the Moderate Resolution Imaging Spectroradiometer (MODIS) on satellite platforms provide data only at 1000 m, which constraints the spatial resolution of EF estimates. A simple model (disaggregation of evaporative fraction (DEFrac)) based on the observed relationship between EF and the normalized difference vegetation index is proposed to spatially disaggregate EF. The DEFrac model was tested with EF estimated from the triangle method using 113 clear sky data sets from the MODIS sensor aboard Terra and Aqua satellites. Validation was done using the data at four micrometeorological tower sites across varied agro-climatic zones possessing different land cover conditions in India using Bowen ratio energy balance method. The root-mean-square error (RMSE) of EF estimated at 1000 m resolution using the triangle method was 0.09 for all the four sites put together. The RMSE of DEFrac disaggregated EF was 0.09 for 250 m resolution. Two models of input disaggregation were also tried with thermal data sharpened using two thermal sharpening models DisTrad and TsHARP. The RMSE of disaggregated EF was 0.14 for both the input disaggregation models for 250 m resolution. Moreover, spatial analysis of disaggregation was performed using Landsat-7 (Enhanced Thematic Mapper) ETM+ data over four grids in India for contrasted seasons. It was observed that the DEFrac model performed better than the input disaggregation models under cropped conditions while they were marginally similar under non-cropped conditions.
Resumo:
The spatial error structure of daily precipitation derived from the latest version 7 (v7) tropical rainfall measuring mission (TRMM) level 2 data products are studied through comparison with the Asian precipitation highly resolved observational data integration toward evaluation of the water resources (APHRODITE) data over a subtropical region of the Indian subcontinent for the seasonal rainfall over 6 years from June 2002 to September 2007. The data products examined include v7 data from the TRMM radiometer Microwave Imager (TMI) and radar precipitation radar (PR), namely, 2A12, 2A25, and 2B31 (combined data from PR and TMI). The spatial distribution of uncertainty from these data products were quantified based on performance metrics derived from the contingency table. For the seasonal daily precipitation over a subtropical basin in India, the data product of 2A12 showed greater skill in detecting and quantifying the volume of rainfall when compared with the 2A25 and 2B31 data products. Error characterization using various error models revealed that random errors from multiplicative error models were homoscedastic and that they better represented rainfall estimates from 2A12 algorithm. Error decomposition techniques performed to disentangle systematic and random errors verify that the multiplicative error model representing rainfall from 2A12 algorithm successfully estimated a greater percentage of systematic error than 2A25 or 2B31 algorithms. Results verify that although the radiometer derived 2A12 rainfall data is known to suffer from many sources of uncertainties, spatial analysis over the case study region of India testifies that the 2A12 rainfall estimates are in a very good agreement with the reference estimates for the data period considered.
Resumo:
Charge-transfer (CT) excitations are essential for photovoltaic phenomena in organic solar cells. Owing to the complexity of molecular geometries and orbital coupling, a detailed analysis and spatial visualisation of CT processes can be challenging. In this paper, a new detail-oriented visualisation scheme, the particle-hole map (PHM), is applied and explained for the purpose of spatial analysis of excitations in organic molecules. The PHM can be obtained from the output of a time-dependent density-functional theory calculation with negligible additional computational cost, and provides a useful physical picture for understanding the origins and destinations of electrons and holes during an excitation process. As an example, we consider intramolecular CT excitations in Diketopyrrolopyrrole-based molecules, and relate our findings to experimental results.
Resumo:
In this paper an attempt has been made to evaluate the spatial variability of the depth of weathered and engineering bedrock in Bangalore, south India using Multichannel Analysis of Surface Wave (MASW) survey. One-dimensional MASW survey has been carried out at 58 locations and shear-wave velocities are measured. Using velocity profiles, the depth of weathered rock and engineering rock surface levels has been determined. Based on the literature, shear-wave velocity of 330 ± 30 m/s for weathered rock or soft rock and 760 ± 60 m/s for engineering rock or hard rock has been considered. Depths corresponding to these velocity ranges are evaluated with respect to ground contour levels and top surface levels have been mapped with an interpolation technique using natural neighborhood. The depth of weathered rock varies from 1 m to about 21 m. In 58 testing locations, only 42 locations reached the depths which have a shear-wave velocity of more than 760 ± 60 m/s. The depth of engineering rock is evaluated from these data and it varies from 1 m to about 50 m. Further, these rock depths have been compared with a subsurface profile obtained from a two-dimensional (2-D) MASW survey at 20 locations and a few selected available bore logs from the deep geotechnical boreholes.
Resumo:
In recent years, spatial variability modeling of soil parameters using random field theory has gained distinct importance in geotechnical analysis. In the present Study, commercially available finite difference numerical code FLAC 5.0 is used for modeling the permeability parameter as spatially correlated log-normally distributed random variable and its influence on the steady state seepage flow and on the slope stability analysis are studied. Considering the case of a 5.0 m high cohesive-frictional soil slope of 30 degrees, a range of coefficients of variation (CoV%) from 60 to 90% in the permeability Values, and taking different values of correlation distance in the range of 0.5-15 m, parametric studies, using Monte Carlo simulations, are performed to study the following three aspects, i.e., (i) effect ostochastic soil permeability on the statistics of seepage flow in comparison to the analytic (Dupuit's) solution available for the uniformly constant permeability property; (ii) strain and deformation pattern, and (iii) stability of the given slope assessed in terms of factor of safety (FS). The results obtained in this study are useful to understand the role of permeability variations in slope stability analysis under different slope conditions and material properties. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The growth of characteristic length scales associated with dynamic heterogeneity in glass-forming liquids is investigated in an extensive computational study of a four-point, time-dependent structure factor defined from spatial correlations of mobility, for a model liquid for system sizes extending up to 351 232 particles, in constant-energy and constant-temperature ensembles. Our estimates for dynamic correlation lengths and susceptibilities are consistent with previous results from finite size scaling. We find scaling exponents that are inconsistent with predictions from inhomogeneous mode coupling theory and a recent simulation confirmation of these predictions.
Resumo:
The effect of using a spatially smoothed forward-backward covariance matrix on the performance of weighted eigen-based state space methods/ESPRIT, and weighted MUSIC for direction-of-arrival (DOA) estimation is analyzed. Expressions for the mean-squared error in the estimates of the signal zeros and the DOA estimates, along with some general properties of the estimates and optimal weighting matrices, are derived. A key result is that optimally weighted MUSIC and weighted state-space methods/ESPRIT have identical asymptotic performance. Moreover, by properly choosing the number of subarrays, the performance of unweighted state space methods can be significantly improved. It is also shown that the mean-squared error in the DOA estimates is independent of the exact distribution of the source amplitudes. This results in a unified framework for dealing with DOA estimation using a uniformly spaced linear sensor array and the time series frequency estimation problems.
Resumo:
The statistical performance analysis of ESPRIT, root-MUSIC, minimum-norm methods for direction estimation, due to finite data perturbations, using the modified spatially smoothed covariance matrix, is developed. Expressions for the mean-squared error in the direction estimates are derived based on a common framework. Based on the analysis, the use of the modified smoothed covariance matrix improves the performance of the methods when the sources are fully correlated. Also, the performance is better even when the number of subarrays is large unlike in the case of the conventionally smoothed covariance matrix. However, the performance for uncorrelated sources deteriorates due to an artificial correlation introduced by the modified smoothing. The theoretical expressions are validated using extensive simulations. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
A simplified energy‐level scheme is proposed for the photochemical cycle of the bacteriorhodopsin molecule. Rate equations are solved for the detailed light‐induced processes based on this model and the intensity‐induced population densities in various states of the molecule at steady state are computed which are used to obtain an analytic expression for the absorption coefficient of the modulation beam. Modulation of the probe laser‐beam transmission by the modulation‐laser‐beam intensity‐induced population changes is analyzed. It is predicted that for a probe beam at 412 nm up to 82% modulation can be achieved using a laser beam intensity of 3.2 W/cm2 at 570 nm. For temperatures ∼77 K, the transmission at 610 nm can be switched from zero to 81% for modulating laser intensity of 11 W/cm2. Construction of a spatial light modulator based on bacteriorhodopsin molecules is proposed and some of its features are discussed.
Resumo:
Urbanisation is a dynamic complex phenomenon involving large scale changes in the land uses at local levels. Analyses of changes in land uses in urban environments provide a historical perspective of land use and give an opportunity to assess the spatial patterns, correlation, trends, rate and impacts of the change, which would help in better regional planning and good governance of the region. Main objective of this research is to quantify the urban dynamics using temporal remote sensing data with the help of well-established landscape metrics. Bangalore being one of the rapidly urbanising landscapes in India has been chosen for this investigation. Complex process of urban sprawl was modelled using spatio temporal analysis. Land use analyses show 584% growth in built-up area during the last four decades with the decline of vegetation by 66% and water bodies by 74%. Analyses of the temporal data reveals an increase in urban built up area of 342.83% (during 1973-1992), 129.56% (during 1992-1999), 106.7% (1999-2002), 114.51% (2002-2006) and 126.19% from 2006 to 2010. The Study area was divided into four zones and each zone is further divided into 17 concentric circles of 1 km incrementing radius to understand the patterns and extent of the urbanisation at local levels. The urban density gradient illustrates radial pattern of urbanisation for the period 1973-2010. Bangalore grew radially from 1973 to 2010 indicating that the urbanisation is intensifying from the central core and has reached the periphery of the Greater Bangalore. Shannon's entropy, alpha and beta population densities were computed to understand the level of urbanisation at local levels. Shannon's entropy values of recent time confirms dispersed haphazard urban growth in the city, particularly in the outskirts of the city. This also illustrates the extent of influence of drivers of urbanisation in various directions. Landscape metrics provided in depth knowledge about the sprawl. Principal component analysis helped in prioritizing the metrics for detailed analyses. The results clearly indicates that whole landscape is aggregating to a large patch in 2010 as compared to earlier years which was dominated by several small patches. The large scale conversion of small patches to large single patch can be seen from 2006 to 2010. In the year 2010 patches are maximally aggregated indicating that the city is becoming more compact and more urbanised in recent years. Bangalore was the most sought after destination for its climatic condition and the availability of various facilities (land availability, economy, political factors) compared to other cities. The growth into a single urban patch can be attributed to rapid urbanisation coupled with the industrialisation. Monitoring of growth through landscape metrics helps to maintain and manage the natural resources. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
This paper discusses an approach for river mapping and flood evaluation based on multi-temporal time-series analysis of satellite images utilizing pixel spectral information for image clustering and region based segmentation for extracting water covered regions. MODIS satellite images are analyzed at two stages: before flood and during flood. Multi-temporal MODIS images are processed in two steps. In the first step, clustering algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are used to distinguish the water regions from the non-water based on spectral information. These algorithms are chosen since they are quite efficient in solving multi-modal optimization problems. These classified images are then segmented using spatial features of the water region to extract the river. From the results obtained, we evaluate the performance of the methods and conclude that incorporating region based image segmentation along with clustering algorithms provides accurate and reliable approach for the extraction of water covered region.