84 resultados para Endurance running

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Al-Si-graphite particle composite alloy pistons containing different percentages of about 80 μm uncoated graphite particles were successfully cast by foundry techniques. Tests with a 5 hp single-cylinder diesel engine show that Al-Si-graphite particle composite pistons can withstand an endurance test of 500 h without any apparent deterioration and do not seize during the running-in period. The use of the Al-Si-3% graphite particle composite piston also results in (a) up to 3% reduction in the specific fuel consumption, (b) considerable reduction in the wear of all four piston rings, (c) a reduction in piston wear, (d) a 9% reduction in the frictional horsepower losses of the engine as determined by the motoring test and (e) a slight increase in the exhaust gas temperature. These reductions (a)–(d) appear to be due to increased lubrication from the graphite particles which are smeared on the bearing surface, the higher damping capacity of the composite pistons and the reduced coefficient of thermal expansion of the composite pistons. Preliminary results indicate that aluminum-graphite particle composite alloy is a promising material for automotive pistons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conformance between the liner and rings of an internal combustion engine depends mainly on their linear wear (dimensional loss) during running-in. Running-in wear studies, using the factorial design of experiments, on a compression ignition engine show that at certain dead centre locations of piston rings the linear wear of the cylinder liner increases with increase in the initial surface roughness of the liner. Rough surfaces wear rapidly without seizure during running-in to promote quick conformance, so an initial surface finish of the liner of 0.8 μm c.l.a. is recommended. The linear wear of the cast iron liner and rings decreases with increasing load but the mass wear increases with increasing load. This discrepancy is due to phase changes in the cast iron accompanied by dimensional growth at higher thermal loads. During running-in the growth of cast iron should be minimised by running the engine at an initial load for which the exhaust gas temperature is approximately 180 °C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, the problem of two Unmanned Aerial Vehicles (UAVs) cooperatively searching an unknown region is addressed. The search region is discretized into hexagonal cells and each cell is assumed to possess an uncertainty value. The UAVs have to cooperatively search these cells taking limited endurance, sensor and communication range constraints into account. Due to limited endurance, the UAVs need to return to the base station for refuelling and also need to select a base station when multiple base stations are present. This article proposes a route planning algorithm that takes endurance time constraints into account and uses game theoretical strategies to reduce the uncertainty. The route planning algorithm selects only those cells that ensure the agent will return to any one of the available bases. A set of paths are formed using these cells which the game theoretical strategies use to select a path that yields maximum uncertainty reduction. We explore non-cooperative Nash, cooperative and security strategies from game theory to enhance the search effectiveness. Monte-Carlo simulations are carried out which show the superiority of the game theoretical strategies over greedy strategy for different look ahead step length paths. Within the game theoretical strategies, non-cooperative Nash and cooperative strategy perform similarly in an ideal case, but Nash strategy performs better than the cooperative strategy when the perceived information is different. We also propose a heuristic based on partitioning of the search space into sectors to reduce computational overhead without performance degradation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Running fractal dimensions were measured on four channels of an electroencephalogram (EEG) recorded from a normal volunteer. The changes in the background activity due to eye closure were clearly differentiated by the fractal method. The compressed spectral array (CSA) and the running fractal dimensions of the EEG showed corresponding changes with respect to change in the background activity. The fractal method was also successful in detecting low amplitude spikes and the changes in the patterns in the EEG. The effects of different window lengths and shifts on the running fractal dimension have also been studied. The utility of fractal method for EEG data compression is highlighted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational grids are increasingly being used for executing large multi-component scientific applications. The most widely reported advantages of application execution on grids are the performance benefits, in terms of speeds, problem sizes or quality of solutions, due to increased number of processors. We explore the possibility of improved performance on grids without increasing the application’s processor space. For this, we consider grids with multiple batch systems. We explore the challenges involved in and the advantages of executing long-running multi-component applications on multiple batch sites with a popular multi-component climate simulation application, CCSM, as the motivation.We have performed extensive simulation studies to estimate the single and multi-site execution rates of the applications for different system characteristics.Our experiments show that in many cases, multiple batch executions can have better execution rates than a single site execution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational grids with multiple batch systems (batch grids) can be powerful infrastructures for executing long-running multicomponent parallel applications. In this paper, we have constructed a middleware framework for executing such long-running applications spanning multiple submissions to the queues on multiple batch systems. We have used our framework for execution of a foremost long-running multi-component application for climate modeling, the Community Climate System Model (CCSM). Our framework coordinates the distribution, execution, migration and restart of the components of CCSM on the multiple queues where the component jobs of the different queues can have different queue waiting and startup times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present talk, we will discuss a six dimensional mass generation for the neutrinos. The SM neutrinos live on a 3-brane and interact via a brane localised mass term with a Weyl singlet neutrino residing in all the six dimensions. We present the physical neutrino mass spectrum and show that the active neutrino mass and the KK masses have a logarithmic cut-off dependence at the tree level. This translates in to a renormalisation group running of n -masses above the KK compactification scale coming from classical effects without any SM particles in the spectrum.This could have effects in neutrinoless double beta decay experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PEFCs employing Nafion-silica (Nafion-SiO2) and Nafion-mesoporous zirconium phosphate (Nafion-MZP) composite membranes are subjected to accelerated-durability test at 100 degrees C and 15% relative humidity (RH) at open-circuit voltage (OCV) for 50 h and performance compared with the PEFC employing pristine Nafion-1135 membrane. PEFCs with composite membranes sustain the operating voltage better with fluoride-ion-emission rate at least an order of magnitude lower than PEFC with pristine Nafion-1135 membrane. Reduced gas-crossover, fast fuel-cell-reaction kinetics and superior performance of the PEFCs with Nafion-SiO2 and Nafion-MZP composite membranes in relation to the PEFC with pristine Nafion-1135 membrane support the long-term operational usage of the former in PEFCs. An 8-cell PEFC stack employing Nafion-SiO2 composite membrane is also assembled and successfully operated at 60 degrees C without external humidification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational grids with multiple batch systems (batch grids) can be powerful infrastructures for executing long-running multi-component parallel applications. In this paper, we evaluate the potential improvements in throughput of long-running multi-component applications when the different components of the applications are executed on multiple batch systems of batch grids. We compare the multiple batch executions with executions of the components on a single batch system without increasing the number of processors used for executions. We perform our analysis with a foremost long-running multi-component application for climate modeling, the Community Climate System Model (CCSM). We have built a robust simulator that models the characteristics of both the multi-component application and the batch systems. By conducting large number of simulations with different workload characteristics and queuing policies of the systems, processor allocations to components of the application, distributions of the components to the batch systems and inter-cluster bandwidths, we show that multiple batch executions lead to 55% average increase in throughput over single batch executions for long-running CCSM. We also conducted real experiments with a practical middleware infrastructure and showed that multi-site executions lead to effective utilization of batch systems for executions of CCSM and give higher simulation throughput than single-site executions. Copyright (c) 2011 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ceramic samples of SrBi2Ta2O9 (SBT) were prepared by the solid state reaction method with a view to study their electrical properties. Reasons as to why SBT shows better fatigue endurance than conventional perovskites like Pb(Zr, Ti)O-3 are looked into. Complex impedance spectroscopy (CIS) was used as a tool to do so. CIS data was acquired over the temperature range from room temperature to 500 degrees C over a wide range of frequencies. Electrical conductivity data indicates that the conductivity in SBT is essentially due to oxygen vacancies and the activation energy for conduction in the high temperature region was found to be 0.95 eV. CIS was used to separate out the bulk and the interfacial contributions to complex impedance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High end network security applications demand high speed operation and large rule set support. Packet classification is the core functionality that demands high throughput in such applications. This paper proposes a packet classification architecture to meet such high throughput. We have implemented a Firewall with this architecture in reconflgurable hardware. We propose an extension to Distributed Crossproducting of Field Labels (DCFL) technique to achieve scalable and high performance architecture. The implemented Firewall takes advantage of inherent structure and redundancy of rule set by using our DCFL Extended (DCFLE) algorithm. The use of DCFLE algorithm results in both speed and area improvement when it is implemented in hardware. Although we restrict ourselves to standard 5-tuple matching, the architecture supports additional fields. High throughput classification invariably uses Ternary Content Addressable Memory (TCAM) for prefix matching, though TCAM fares poorly in terms of area and power efficiency. Use of TCAM for port range matching is expensive, as the range to prefix conversion results in large number of prefixes leading to storage inefficiency. Extended TCAM (ETCAM) is fast and the most storage efficient solution for range matching. We present for the first time a reconfigurable hardware implementation of ETCAM. We have implemented our Firewall as an embedded system on Virtex-II Pro FPGA based platform, running Linux with the packet classification in hardware. The Firewall was tested in real time with 1 Gbps Ethernet link and 128 sample rules. The packet classification hardware uses a quarter of logic resources and slightly over one third of memory resources of XC2VP30 FPGA. It achieves a maximum classification throughput of 50 million packet/s corresponding to 16 Gbps link rate for the worst case packet size. The Firewall rule update involves only memory re-initialization in software without any hardware change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the title compound, C12H10N2O, the dihedral angle between the phenyl and pyridine rings is 64.81 (1)degrees. Intermolecular N-H center dot center dot center dot O hydrogen bonds connect the molecules into chains running along the b axis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High end network security applications demand high speed operation and large rule set support. Packet classification is the core functionality that demands high throughput in such applications. This paper proposes a packet classification architecture to meet such high throughput. We have Implemented a Firewall with this architecture in reconfigurable hardware. We propose an extension to Distributed Crossproducting of Field Labels (DCFL) technique to achieve scalable and high performance architecture. The implemented Firewall takes advantage of inherent structure and redundancy of rule set by using, our DCFL Extended (DCFLE) algorithm. The use of DCFLE algorithm results In both speed and area Improvement when It is Implemented in hardware. Although we restrict ourselves to standard 5-tuple matching, the architecture supports additional fields.High throughput classification Invariably uses Ternary Content Addressable Memory (TCAM) for prefix matching, though TCAM fares poorly In terms of area and power efficiency. Use of TCAM for port range matching is expensive, as the range to prefix conversion results in large number of prefixes leading to storage inefficiency. Extended TCAM (ETCAM) is fast and the most storage efficient solution for range matching. We present for the first time a reconfigurable hardware Implementation of ETCAM. We have implemented our Firewall as an embedded system on Virtex-II Pro FPGA based platform, running Linux with the packet classification in hardware. The Firewall was tested in real time with 1 Gbps Ethernet link and 128 sample rules. The packet classification hardware uses a quarter of logic resources and slightly over one third of memory resources of XC2VP30 FPGA. It achieves a maximum classification throughput of 50 million packet/s corresponding to 16 Gbps link rate for file worst case packet size. The Firewall rule update Involves only memory re-initialiization in software without any hardware change.