8 resultados para Emotional Disorders
em Indian Institute of Science - Bangalore - Índia
Resumo:
Consanguineous marriages are strongly favoured among the populations of South India. In a study conducted on 407 infants and children, a total of 35 genetic diseases was diagnosed in 63 persons: 44 with single gene defects, 12 with polygenic disorders, and seven with Down's syndrome. The coefficient of inbreeding of the total study group, F = 0.0414, was significantly higher than that previously calculated for the general population, F = 0.0271, and autosomal recessive disorders formed the largest single disease category diagnosed. The results suggest that long term inbreeding may not have resulted in appreciable elimination of recessive lethals and sub-lethals from the gene pool.
Resumo:
The characteristics of neurological, psychiatric, developmental and substance-use disorders in low-and middle-income countries are unique and the burden that they have will be different from country to country. Many of the differences are explained by the wide variation in population demographics and size, poverty, conflict, culture, land area and quality, and genetics. Neurological, psychiatric, developmental and substance-use disorders that result from, or are worsened by, a lack of adequate nutrition and infectious disease still afflict much of sub-Saharan Africa, although disorders related to increasing longevity, such as stroke, are on the rise. In the Middle East and North Africa, major depressive disorders and post-traumatic stress disorder are a primary concern because of the conflict-ridden environment. Consanguinity is a serious concern that leads to the high prevalence of recessive disorders in the Middle East and North Africa and possibly other regions. The burden of these disorders in Latin American and Asian countries largely surrounds stroke and vascular disease, dementia and lifestyle factors that are influenced by genetics. Although much knowledge has been gained over the past 10 years, the epidemiology of the conditions in low-and middle-income countries still needs more research. Prevention and treatments could be better informed with more longitudinal studies of risk factors. Challenges and opportunities for ameliorating nervous-system disorders can benefit from both local and regional research collaborations. The lack of resources and infrastructure for health-care and related research, both in terms of personnel and equipment, along with the stigma associated with the physical or behavioural manifestations of some disorders have hampered progress in understanding the disease burden and improving brain health. Individual countries, and regions within countries, have specific needs in terms of research priorities.
Resumo:
A cardinal feature of early stages of human brain development centers on the sensory, cognitive, and emotional experiences that shape neuronal-circuit formation and refinement. Consequently, alterations in these processes account for many psychiatric and neurodevelopmental disorders. Neurodevelopment disorders affect 3-4% of the world population. The impact of these disorders presents a major challenge to clinicians, geneticists, and neuroscientists. Mutations that cause neurodevelopmental disorders are commonly found in genes encoding proteins that regulate synaptic function. Investigation of the underlying mechanisms using gain or loss of function approaches has revealed alterations in dendritic spine structure, function, and plasticity, consequently modulating the neuronal circuit formation and thereby raising the possibility of neurodevelopmental disorders resulting from synaptopathies. One such gene, SYNGAP1 (Synaptic Ras-GTPase-activating protein) has been shown to cause Intellectual Disability (ID) with comorbid Autism Spectrum Disorder (ASD) and epilepsy in children. SYNGAP1 is a negative regulator of Ras, Rap and of AMPA receptor trafficking to the postsynaptic membrane, thereby regulating not only synaptic plasticity, but also neuronal homeostasis. Recent studies on the neurophysiology of SYNGAP1, using Syngapl mouse models, have provided deeper insights into how downstream signaling proteins and synaptic plasticity are regulated by SYNGAP1. This knowledge has led to a better understanding of the function of SYNGAP1 and suggests a potential target during critical period of development when the brain is more susceptible to therapeutic intervention.
Resumo:
A cardinal feature of early stages of human brain development centers on the sensory, cognitive, and emotional experiences that shape neuronal-circuit formation and refinement. Consequently, alterations in these processes account for many psychiatric and neurodevelopmental disorders. Neurodevelopment disorders affect 3-4% of the world population. The impact of these disorders presents a major challenge to clinicians, geneticists, and neuroscientists. Mutations that cause neurodevelopmental disorders are commonly found in genes encoding proteins that regulate synaptic function. Investigation of the underlying mechanisms using gain or loss of function approaches has revealed alterations in dendritic spine structure, function, and plasticity, consequently modulating the neuronal circuit formation and thereby raising the possibility of neurodevelopmental disorders resulting from synaptopathies. One such gene, SYNGAP1 (Synaptic Ras-GTPase-activating protein) has been shown to cause Intellectual Disability (ID) with comorbid Autism Spectrum Disorder (ASD) and epilepsy in children. SYNGAP1 is a negative regulator of Ras, Rap and of AMPA receptor trafficking to the postsynaptic membrane, thereby regulating not only synaptic plasticity, but also neuronal homeostasis. Recent studies on the neurophysiology of SYNGAP1, using Syngapl mouse models, have provided deeper insights into how downstream signaling proteins and synaptic plasticity are regulated by SYNGAP1. This knowledge has led to a better understanding of the function of SYNGAP1 and suggests a potential target during critical period of development when the brain is more susceptible to therapeutic intervention.
Maintaining local displacive disorders in Na0.5Bi0.5TiO3 piezoceramics by K0.5Bi0.5TiO3 substitution
Resumo:
A comprehensive global and local structural characterization using X-ray and neutron diffraction, and EXAFS have been performed to investigate the effect of electrical poling on the structure of (1-x)Na0.5Bi0.5TiO3-(x)K0.5Bi0.5TiO3 compositions. While the annealed samples showed definite indication of presence of local displacive disorders in all the compositions studied (0