42 resultados para Emerging Cultures
em Indian Institute of Science - Bangalore - Índia
Resumo:
Embryogenesis has been induced from endosperm callus cultures of sandalwood (Santalum album L.). Viable plantlets developed from the embryoids on subculture to White's basal medium supplemented with 0.5 mg/l of indole acetic acid. Chromosomal analysis of the root tips showed the triploid number 3n = 30.
Resumo:
A high level of extracellular beta-lactamase activity was detected in cultures ofMycobacterium smegmatis SN2. The extracellular distribution of the enzyme varied with growth conditions such as additional carbon source and pH of the medium. Addition of chloramphenicol tothe culture inhibited the increase in the extracellular beta-lactamase activity. Cell wall damage or autolysis may be responsible for the extracellular beta-lactamase activity.
Resumo:
Suspension cultures of Catharanthus roseus were used to evaluate ultraviolet-B (UV-B) treatment as an abiotic elicitor of secondary metabolites. A dispersed cell suspension culture from C. roseus leaves in late exponential phase and stationary phase were irradiated with UV-B for 5 min. The stationary phase cultures were more responsive to UV-B irradiation than late exponential phase cultures. Catharanthine and vindoline increased 3-fold and 12-fold, respectively, on treatment with a 5-min UV-B irradiation.
Resumo:
Mycobacterium smegmatis is known to form biofilms and many cell surface molecules like core glycopeptidolipids and short-chain mycolates appear to play important role in the process. However, the involvement of the cell surface molecules in mycobacteria towards complete maturation of biofilms is still not clear. This work demonstrates the importance of the glycopeptidolipid species with hydroxylated alkyl chain and the epoxylated mycolic acids, during the process of biofilm development. In our previous study, we reported the impairment of biofilm formation in rpoZ-deleted M. smegmatis, where rpoZ codes for the ω subunit of RNA polymerase (R. Mathew, R. Mukherjee, R. Balachandar, D. Chatterji, Microbiology 152 (2006) 1741). Here we report the occurrence of planktonic growth in a mc2155 strain which is devoid of rpoZ gene. This strain is deficient in selective incorporation of the hydroxylated glycopeptidolipids and the epoxy mycolates to their respective locations in the cell wall. Hence it forms a mutant biofilm defective in maturation, wherein the cells undertake various alternative metabolic pathways to survive in an environment where oxygen, the terminal electron acceptor, is limiting.
Resumo:
This article describes recent developments in the design and implementation of various strategies towards the development of novel therapeutics using first principles from biology and chemistry. Strategies for multi-target therapeutics and network analysis with a focus on cancer and HIV are discussed. Methods for gene and siRNA delivery are presented along with challenges and opportunities for siRNA therapeutics. Advances in protein design methodology and screening are described, with a focus on their application to the design of antibody based therapeutics. Future advances in this area relevant to vaccine design are also mentioned.
Resumo:
Aims. Following an earlier proposal for the origin of twist in the magnetic fields of solar active regions, we model the penetration of a wrapped up background poloidal field into a toroidal magnetic flux tube rising through the solar convective zone.Methods. The rise of the straight, cylindrical flux tube is followed by numerically solving the induction equation in a comoving Lagrangian frame, while an external poloidal magnetic field is assumed to be radially advected onto the tube with a speed corresponding to the rise velocity.Results. One prediction of our model is the existence of a ring of reverse current helicity on the periphery of active regions. On the other hand, the amplitude of the resulting twist depends sensitively on the assumed structure ( diffuse vs. concentrated/intermittent) of the active region magnetic field right before its emergence, and on the assumed vertical profile of the poloidal field. Nevertheless, in the model with the most plausible choice of assumptions a mean twist comparable to the observations results.Conclusions. Our results indicate that the contribution of this mechanism to the twist can be quite significant, and under favourable circumstances it can potentially account for most of the current helicity observed in active regions.
Resumo:
The morphogenetic pathway leading to plant differentiation in tobacco mesophyll protoplasts could be regulated. The course of development via organogenesis or embryogenesis was controlled by manipulating nutrient media, culture conditions and hormone requirements. A lowering of molarity of medium after 5 weeks of protoplast culture, inclusion of GA3 (0.5 mg/l) in the medium for first 8 weeks of culture and exclusion of reduced nitrogen in the medium resulted in shoot organogenesis, while maintenance of higher molarity of the medium till 8 weeks, reduced nitrogen in the medium and removal of 2, 4-D after 5 weeks of culture induced embryogenesis. Regenerability of viable plants was obtained by both developmental pathways. The implications of tobacco embryogenesis system in plant molecular genetics were highlighted.
Resumo:
Callus cultures were established from hypocotyls and cotyledons derived from young seedlings of Eucalyptus citriodora. Successful plantlet production from cotyledonary callus was achieved within 6 weeks on Murashige and Skoog's basal medium supplemented with zeatin (1 mg/l) and indoleacetic acid (0.2 mg/l). Leaf and shoot callus obtained from one-year-old plants did not differentiate. Results reported contribute to defining optimal conditions for callus growth and plantlet formation