35 resultados para Embryo
em Indian Institute of Science - Bangalore - Índia
Resumo:
. The changes in the net amounts of retinol, retinyl esters and retinal in both the developing chick embryo and the newly hatched chick were investigated. The embryo requires about 68nmol of the vitamin for its growth, whereas the baby chick requires about 108nmol during the first 7 days after hatching. 2. Retinal was present in the egg in fairly high concentrations at the beginning of the incubation but it virtually disappeared from the extra-embryonic tissue after day 17 of incubation. It was not found in the liver of the embryo or of the newly hatched chick up until day 7.
Resumo:
Chick embryo tRNA, prepared by a simple large-scale method, was fractionated on three different ion-exchange columns. In all cases simple chromatographic patterns for various tRNA species were observed, indicating the presence of only a few major species of tRNA for each amino acid. By repeated chromatography one species of alanine tRNA was purified to approx. 80% purity. T1 ribonuclease digest of this purified tRNA gave a simple chromatographic pattern. Because of the simplicity of the method of preparation of tRNA from this readily available source and the presence of only a few species of tRNA for each amino acid, chick embryo is suited for the study of tRNA and its various functions in higher systems.
Resumo:
A simple method for preparing bulk quantities of tRNA from chick embryo has been developed. In this method chick embryos were homogenized in a buffer of pH 4.5, followed by deproteinization with phenol. The aqueous layer was allowed to separate under gravity. The resulting aqueous layer, after two more phenol treatments, was directly passed through a DEAE-cellulose column and the tRNA eluted therefrom with 1 Image NaCl. The tRNA prepared by this method was as active as the one prepared at neutral pH.
Resumo:
The in vitro development of hamster preimplantation embryos is supported by non-glucose energy substrates. To investigate the importance of embryonic metabolism, influence of succinate and malate on the development of hamster 8-cell embryos to blastocysts was examined using a chemically defined protein-free modified hamster embryo culture medium-2 (HECM-2m). There was a dose-dependent influence of succinate on blastocyst development; 0.5 mM succinate was optimal (85.1% ± 3.9 vs. 54.5% ± 3.5). In succinate-supplemented HECM-2m, blastocyst development was reduced by omission of lactate (68.5% ± 7.2), but not pyruvate (85.8% ± 6.2) or glutamine (84.1% ± 2.1). Succinate along with either glutamine or lactate or pyruvate poorly supported blastocyst development (28%-58%). Malate also stimulated blastocyst development; 0.01 mM malate was optimal (86.3% ± 2.8). Supplementation of both succinate and malate to HECM-2m supported maximal (100%) blastocyst development, which was inhibited 4-fold by the addition of glucose/phosphate. The mean cell numbers (MCN) of blastocysts cultured in succinate-supplemented HECM-2m was higher (28.3 ± 1.1) than it was for those cultured in the absence of glutamine or pyruvate (range 20-24). The MCN was the highest (33.4 ± 1.6) for blastocysts cultured in succinate-malate-supplemented HECM-2m followed by those in succinate (28.3 ± 1.1) or malate (24.7 ± 0.5) supplemented HECM-2m. Embryo transfer experiments showed that 29.8% (±4.5) of transferred blastocysts cultured in succinate-malate-supplemented HECM-2m produced live births, similar (P > 0.1) to the control transfers of freshly recovered 8-cells (33.5% ± 2.0) or blastocysts (28.9% ± 3.0). These data show that supplementation of succinate and malate to HECM-2m supports 100% development of hamster 8-cell embryos to high quality viable blastocysts and that non-glucose oxidizable energy substrates are the most preferred components in hamster embryo culture medium. Mol. Reprod. Dev. 47:440-447, 1997. © 1997 Wiley-Liss, Inc.
Resumo:
The inßuence of the sperm motility stimulant pentoxifylline (PF) on preimplantation embryo development in hamsters was evaluated. Eight-cell embryos were cultured in hamster embryo culture medium (HECM)-2, with or without PF (0· 0233·6 mM). There was 90%, 37% and 29% inhibition of blastocyst development by 3·6 (used for human sperm), 0·9 and 0 ·45 mM PF, respectively. However, 23 µM PF (exposed to hamster oocytes during IVF) signicantly (P < 0·05) improved blastocyst development (63· 6% v. 51· 8%); morulae development was, however, not curtailed by 0·45 mM or 0·9 mM PF (51·8%±6·0 or 50·5%±11·3, respectively). Post-implantation viability of PF-treated embryos was assessed by embryo transfer; 43% of 80 PF-treated embryos implanted compared with 40% of 79 control embryos. Of the 9 recipients, 6 females delivered pups (19, i.e. 16% of transferred embryos or 53% of implanted embryos). These data show that in hamsters, continuous presence of PF at 0·45-3·6 mM is detrimental to 8-cell embryo development whereas 23 µM PF improves the development of embryos to viable blastocysts which produce live offspring.
Resumo:
During preimplantation development, embryos of many species are known to express up to five isoforms of the facilitative glucose transporter proteins (GLUT). Development of hamster blastocysts is inhibited by glucose. We therefore investigated GLUT isoform and insulin receptor (IR) expression in hamster preimplantation embryos cultured in glucose-free medium from the 8-cell stage onwards. We show that GLUT1, 3 and 8 mRNA are constitutively expressed from the 8-cell to the blastocyst stage. The IR is expressed from the morula stage onwards. Messenger RNA of the insulin-responsive GLUT4 was not detected at any stage. GLUT1 and 3 were localised by immunocytochemistry. GLUT1 was expressed in both embryoblast and trophoblast, in the latter, mainly in basal and lateral membranes directed towards the blastocoel. and embryoblast. GLUT3 was exclusively localised in the apical. membrane of trophoblast cells. We show that hamster preimplantation embryos express several GLUT isoforms thus closely resembling embryos of other mammalian species. Despite endogenous IR expression, the insulin-sensitive isoform GLUT4 was not expressed, indicating that the insulin-mediated glucose uptake known from classical insulin target cells may not be relevant for hamster blastocysts.
Resumo:
The specific role of oestrogen in follicular maturation, ovulation and early embryonic development was investigated using Fadrozole (CGS 16949A), a non-steroidal aromatase inhibitor, to block oestrogen synthesis specifically and effectively in experimental animals. Induced and normal cyclical follicular maturation as well as normal and hCG/LH-induced ovulation were relatively unaffected by significantly depleting oestrogen in all animals (hamsters, rabbits, monkeys) studied other than rats. Fadrozole treatment significantly reduced the number of healthy antral follicles produced and the ovulatory response to exogenous hCG of immature rats primed with pregnant mares' serum gonadotrophin. The effect was specific, in that exogenously administered oestrogen reversed the blockade. Depletion of oestrogen, starting early in pro-oestrus in hamsters, had no effect on ovulation, oocyte maturation and fertilization, as normal implantation sites were seen on day 6 after coitus. In rabbits, oestrogen depletion during the periovulatory phase affected oviductal morphology and function. Although fertilization was not impaired, early embryo development did not appear to be normal. In monkeys, oestrogen depletion during the follicular phase did not lead to a block of follicular maturation or ovulation but resulted in a significant reduction in secretion of cervical mucus. Administration of either Fadrozole or Tamoxifen during the early luteal phase in cyclic monkeys that were allowed to mate prevented implantation and this appears to be due to impaired fertilization or faulty embryo development. These results suggest that, although there is a clear requirement for oestrogen to support the reproductive cycle in the female, the need for oestrogen in regulating specific events is species dependent.
Resumo:
Development of preimplantation embryos and blastocyst implantation are critical early events in the establishment of pregnancy. In primates, embryonic signals, secreted during the peri-implantation period, are believed to play a major role in the regulation of embryonic differentiation and implantation. However, only limited progress has been made in the molecular and functional characterization of embryonic signals, partly due to severe paucity of primate embryos and the lack of optimal culture conditions to obtain viable embryo development. Two embryonic (endocrine) secretions, i.e. chorionic gonadotrophin (CG) and gonadotrophin releasing hormone (GnRH) are being studied. This article reviews the current status of knowledge on the recovery and culture of embryos, their secretion of CG, GnRH and other potential endocrine signals and their regulation and physiological role(s) during the peri-implantation period in primates, including humans.
Resumo:
There has been growing interest in understanding energy metabolism in human embryos generated using assisted reproductive techniques (ART) for improving the overall success rate of the method. Using NMR spectroscopy as a noninvasive tool, we studied human embryo metabolism to identify specific biomarkers to assess the quality of embryos for their implantation potential. The study was based on estimation of pyruvate, lactate and alanine levels in the growth medium, ISM1, used in the culture of embryos. An NMR study involving 127 embryos from 48 couples revealed that embryos transferred on Day 3 (after 72 h in vitro culture) with successful implantation (pregnancy) exhibited significantly (p < 10(-5)) lower pyruvate/alanine ratios compared to those that failed to implant. Lactate levels in media were similar for all embryos. This implies that in addition to lactate production, successfully implanted embryos use pyruvate to produce alanine and other cellular functions. While pyruvate and alanine individually have been used as biomarkers, the present study highlights the potential of combining them to provide a single parameter that correlates strongly with implantation potential. Copyright (C) 2012 John Wiley & Sons, Ltd.
Resumo:
THE rapid development of recombinant DNA technology has brought forth a revolution in biology'>", it aids us to have a closer look at the 'way genes are organized, eS11 ecially in the complex eucaryotic genornes'<", Although many animal and yeast genes have been studied in detail using recombinant DNA technology, plant genes have seldom been targets for such studie., Germination is an ideal process to study gene expression .because it effects a . shift in the metabolic status of seeds from a state of 'dormancy to an active one. AJ;l understanding of gene organization and regulation darin.g germination can be accomplblted by molecular cloning of DNA from seeds lik.e rice. To study the status of histone, rRNA tRNA and other genes in the rice genome, a general method was developed to clone eucarvotic DNA in a' plasmid vector pBR 322. This essentially ~ involves the following steps. The rice embryo and plasmid pBR 322 DNAs were cut witll restriction endonuclease Bam Hi to generate stick.Y ends, The plasmid DNA was puosphatased, the DNA~ ware a~·tnealed and joined 'by T4 phage DNA ligase. The recombinant DNA molecules thus produced were transjerred into E. coli and colonies containing them Were selected by their sensitivity to tetracycline and resistance to ampicillin, Two clones were identified . 2S haVing tRNA genes by hybridization of the DNA in the clones \vitl1 32P-la.belled rice tRNAs.
Resumo:
A transamidinase was purified 463-fold from Lathyrus sativus seedlings by affinity chromatography on homoarginine--Sepharose. The enzyme exhibited a wide substrate specificity, and catalysed the reversible transfer of the amidino groups from donors such as arginine, homoarginine and canavanine to acceptors such as lysine, putrescine, agmatine, cadaverine and hydroxylamine. The enzyme could not be detected in the seeds, and attained the highest specific activity in the embryo axis on day 10 after seed germination. Its thiol nature was established by strong inhibition by several thiol blockers and thiol compounds in the presence of ferricyanide. In the absence of an exogenous acceptor, it exhibited weak hydrolytic activity towards arginine. It had apparent mol.wt. 210000, and exhibited Michaelis--Menten kinetics with Km 3.0 mM for arginine. Ornithine competitively inhibited the enzyme, with Ki 1.0 mM in the arginine--hydroxylamine amidino-transfer reaction. Conversion experiments with labelled compounds suggest that the enzyme is involved in homoarginine catabolism during the development of plant embryo to give rise to important amino acids and amine metabolites. Presumptive evidence is also provided for its involvement in the biosynthesis of the guanidino amino acid during seed development. The natural occurrence of arcain in L. sativus and mediation of its synthesis in vitro from agmatine by the transamidinase are demonstrated.
Resumo:
Certain recent models of sex determination in mammals, Drosophila melanogaster, Caenorhabditis elegans, and snakes are examined in the light of the hypothesis that the relevant genetic regulatory mechanisms are similar and interrelated. The proposed key element in each of these instances is a noncoding DNA sequence, which serves as a high-affinity binding site for a repressor-like molecule regulating the activity of a major "sex-determining" gene. On this basis it is argued that, in several eukaryotes, (i) certain DNA sequences that are sex-determining are noncoding, in the sense that they are not the structural genes of a sex-determining protein; (ii) in some species these noncoding sequences are present in one sex and absent in the other, while in others their copy number or accessibility to regulatory molecules is significantly unequal between the two sexes; and (iii) this inequality determines whether the embryo develops into a male or a female.
Resumo:
Regulating systems, that is, those which exhibit scale-invariant patterns in the adult, are supposed, to do so on account of interactions between cells during development. The nature of these interactions has to be such that the system of positional information (ldquomaprdquo) in the embryo also regulates. To our knowledge, this supposition regarding a regulating map has not been subjected to a direct test in any embryonic system. Here we do so by means of a simple and novel criterion and use it to examine tip regeneration in the mulicellular stage (slug) ofDictyostelium discoideum. When anterior, tip-containing fragments of slugs are amputated, a new tip spontaneously regenerates at the cut surface of the (remaining) posterior fragment. The time needed for regeneration to occur depends on the relative size of the amputated fragment but is independent of the total size of the slug. We conclude from this finding that there is at least one system underlying positional information in the slug which regulates.