130 resultados para Electric conductors

em Indian Institute of Science - Bangalore - Índia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A comparative investigation of charge transport properties is presented, for polymeric [poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)], single-wall carbon nanotube (SWNT) and inorganic (indium tin oxide, ITO), transparent conducting electrodes. The polymeric and nanotube systems show hopping transport at low temperatures, in contrast with the disordered-metal transport in ITO. The low temperature magnetotransport (up to 11 T) and high electric-field transport (up to 500 V/cm) indicate the significant role of nanoscopic scale disorder for charge transport in polymer and nanotube based systems. The results show that characteristic length scales like localization length correlates with the nanomorphology in these systems. Further, the high frequency conductivity measurements (up to 30 MHz) in PEDOT:PSS and SWNT follow the extended pair approximation model [σ(ω)=σ(0)[1+(ω/ω0)s].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is now well known that in extreme quantum limit, dominated by the elastic impurity scattering and the concomitant quantum interference, the zero-temperature d.c. resistance of a strictly one-dimensional disordered system is non-additive and non-self-averaging. While these statistical fluctuations may persist in the case of a physically thin wire, they are implicitly and questionably ignored in higher dimensions. In this work, we have re-examined this question. Following an invariant imbedding formulation, we first derive a stochastic differential equation for the complex amplitude reflection coefficient and hence obtain a Fokker-Planck equation for the full probability distribution of resistance for a one-dimensional continuum with a Gaussian white-noise random potential. We then employ the Migdal-Kadanoff type bond moving procedure and derive the d-dimensional generalization of the above probability distribution, or rather the associated cumulant function –‘the free energy’. For d=3, our analysis shows that the dispersion dominates the mobilitly edge phenomena in that (i) a one-parameter B-function depending on the mean conductance only does not exist, (ii) an approximate treatment gives a diffusion-correction involving the second cumulant. It is, however, not clear whether the fluctuations can render the transition at the mobility edge ‘first-order’. We also report some analytical results for the case of the one dimensional system in the presence of a finite electric fiekl. We find a cross-over from the exponential to the power-low length dependence of resistance as the field increases from zero. Also, the distribution of resistance saturates asymptotically to a poissonian form. Most of our analytical results are supported by the recent numerical simulation work reported by some authors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to answer the practically important question of whether the down conductors of lightning protection systems to tall towers and buildings can be electrically isolated from the structure itself, this work is conducted. As a first step in this regard, it is presumed that the down conductor placed on metallic tower will be a pessimistic representation of the actual problem. This opinion was based on the fact that the proximity of heavy metallic structure will have a large damping effect. The post-stroke current distributions along the down conductors and towers, which can be quite different from that in the lightning channel, govern the post-stroke near field and the resulting gradient in the soil. Also, for a reliable estimation of the actual stroke current from the measured down conductor currents, it is essential to know the current distribution characteristics along the down conductors. In view of these, the present work attempts to deduce the post-stroke current and voltage distribution along typical down conductors and towers. A solution of the governing field equations on an electromagnetic model of the system is sought for the investigation. Simulation results providing the spatio-temporal distribution of the post-stroke current and voltage has provided very interesting results. It is concluded that it is almost impossible to achieve electrical isolation between the structure and the down conductor. Furthermore, there will be significant induction into the steel matrix of the supporting structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transmission of bulk power at high voltages over very long distances has become very imperative. At present, throughout the globe, this task has been mostly performed by overhead transmission lines. The dual task of mechanically supporting and electrically isolating the live phase conductors from the support tower is performed by string insulators. Whether in clean condition or under polluted conditions, the electrical stress distribution along the insulators governs the possible flashover, which is quite detrimental to the system. However, a reliable data on stress distribution in commonly employed string insulators are rather scarce. Considering this, the present work has made an attempt to study accurately, the field distribution in 220 kV strings for six different types of porcelain/ceramic insulators (Normal and Antifog discs) used for high voltage transmission. The surface charge simulation method is employed for the required field computation. Voltage and electric stress distribution is deduced and compared across different types of discs. A comparison on normalised surface resistance, which is an indicator for the stress concentration under polluted condition, is also attempted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the end of second world war, extra high voltage ac transmission has seen its development. The distances between generating and load centres as well as the amount of power to be handled increased tremendously for last 50 years. The highest commercial voltage has increased to 765 kV in India and 1,200 kV in many other countries. The bulk power transmission has been mostly performed by overhead transmission lines. The dual task of mechanically supporting and electrically isolating the live phase conductors from the support tower is performed by string insulators. Whether in clean condition or under polluted conditions, the electrical stress distribution along the insulators governs the possible flashover, which is quite detrimental to the system. Hence the present investigation aims to study accurately, the field distribution for various types of porcelain/ceramic insulators (Normal and Antifog discs) used for high-voltage transmission. The surface charge simulation method is employed for the field computation. A comparison on normalised surface resistance, which is an indicator for the stress concentration under polluted condition, is also attempted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A lightning strike in the neighborhood can induce significant currents in tall down conductors. Though the magnitude of induced current in this case is much smaller than that encountered during a direct strike, the probability of occurrence and the frequency content is higher. In view of this, appropriate knowledge on the characteristics of such induced currents is relevant for the scrutiny of the recorded currents and in the evaluation of interference to the electrical and electronic system in the vicinity. Previously, a study was carried out on characteristics of induced currents assuming ideal conditions, that there were no influencing objects in the vicinity of the down conductor and channel. However, some influencing conducting bodies will always be present, such as trees, electricity and communication towers, buildings, and other elevated objects that can affect the induced currents in a down conductor. The present work is carried out to understand the influence of nearby conducting objects on the characteristics of induced currents due to a strike to ground in the vicinity of a tall down conductor. For the study, an electromagnetic model is employed to model the down conductor, channel, and neighboring conducting objects, and Numerical Electromagnetic Code-2 is used for numerical field computations. Neighboring objects of different heights, of different shapes, and at different locations are considered. It is found that the neighboring objects have significant influence on the magnitude and nature of induced currents in a down conductor when the height of the nearby conducting object is comparable to that of the down conductor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ceramic/Porcelain insulators are widely used in power transmission lines to provide mechanical support for High voltage conductors in addition to withstand electrical stresses. As a result of lightning, switching or temporary over voltages that could initiate flashover under worst weather conditions, and to operate within interference limits. Given that the useful life in service of the individual insulator elements making up the insulator strings is hard to predict, they must be verified periodically to ensure that adequate line reliability is maintained at all times. Over the years utilities have adopted few methods to detect defective discs in a string, subsequently replacement of the faulty discs are being carried out for smooth operation. But, if the insulator is found to be defective in a string at some location that may not create any changes in the field configuration, there is no need to replace to avoid manpower and cost of replacement. Due to deficiency of electric field data for the existing string configuration, utilities are forced to replace the discs which may not be essentially required. Hence, effort is made in the present work to simulate the potential and electric field along the normal and with faults induced discs in a string up to 765 kV system voltages using Surface Charge Simulation Method (SCSM). A comparison is made between simulated results, experimental and field data and it was found that the computed results are quite acceptable and useful.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurement of the relation between polarisation and electric field for ferroelectric trissarcosine calcium chloride (TSCC) was made in the pressure range up to 6 kbar. The pressure dependence of the spontaneous polarisation and the coercive field were obtained, and the existence of a new pressure-induced phase and the paraelectric- ferroelectric-new phase triple point were found.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel method is proposed to treat the problem of the random resistance of a strictly one-dimensional conductor with static disorder. It is suggested, for the probability distribution of the transfer matrix of the conductor, the distribution of maximum information-entropy, constrained by the following physical requirements: 1) flux conservation, 2) time-reversal invariance and 3) scaling, with the length of the conductor, of the two lowest cumulants of ζ, where = sh2ζ. The preliminary results discussed in the text are in qualitative agreement with those obtained by sophisticated microscopic theories.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Formative time lags in nitrogen, oxygen, and dry air are measured with and without a magnetic field over a range of gas pressures (0.05 ' p ' 20.2 torr 5 kPa to 2 MPa, electric field strengths (1.8xO14 EEs 60xlO V m l) and magnetic field strengths (85xl0-4 < B ' 16x10-2 Tesla). For experiments below the Paschen minimum, the electrodes are designed to ensure that breakdown occurs over longer gaps and for experiments above the Paschen minimum, a coaxial cylindrical system is employed. The experimental technique consists of applying pulse voltages to the gap at various constant values of E/p and B/p and measuring the time lags from which the formative time lags are separated. In the gases studed, formative time lags decrease on application of a magnetic field at a given pressure for conditions below the Paschen minimum. The voltages at which the formative time lags remain the same without and with magnetic fields are determined, and electron molecule collision frequencies (v/p) are determined using the Effective Reduced Electric Field [EREF] concept. With increasing ratio of E/p in crossed fields, v/p decreases in all the three gases. Measurements above the Paschen minimum yield formative time lags which increase on application of a magnetic field. Formative time lags in nitrogen in ExB fields are calculated assuming an average collision frequency of 8.5x109 sec-1 torr 1. It is concluded that the EREF concept can be applied to explain formative time lags in ExB fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is a well know that electrons and positive ions are responsible in the case of electric spark. Investigation have been undertaken in the high voltage laboratory to study the effect of injecting ions (both possitive and negative)into the spark gap.Also the effect of paper screens in blocking the ions being invetsigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The resistivity of two types of lithium fast-ion conductors, Li16-2xZnx(GeO4)4 (x=1,2) and Li3+xGexV1-xO4 (x=0.25,0.6,0.72), showed pronounced maxima as a function of pressure. For the first type, ln(ρ / ρ0) peaked at values of 0.12 (x=1) and 0.35 (x=2) near 20 kbar and decreased thereafter up to 80 kbar. Thermal activation energies and prefactors also showed corresponding maxima. For the second type, ln(ρ / ρ0) increased to 3-4 between 20 and 32 kbar. Near 80 kbar, ρ decreased (for x=0.25) by a factor of 250. The results are interpreted in terms of negative activation volumes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, reduction and desorption of oxides of nitrogen (NOx) were conducted using an electrical discharge plasma technique. The study was carried out using a simulated gas mixture to explore the possibility of re-generation of used adsorbents by a nonthermal plasma desorption technique. Three different types of corona electrodes, namely, pipe, helical wire, and straight wire, were used for analyzing their effectiveness in NOx reduction/desorption. The pipe-type corona electrode exhibited a nitric oxide (NO) conversion of 50%, which is 1.5 times that of the straight-wire-type electrode at an energy density of 175J/L. The helical-wire-type corona electrode exhibited a NOx desorption efficiency almost 4 times that of the pipe-type electrode,indicating the possibility that corona-generated species play a crucial role in desorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following an invariant-imbedding approach, we obtain analytical expressions for the ensemble-averaged resistance (ρ) and its Sinai’s fluctuations for a one-dimensional disordered conductor in the presence of a finite electric field F. The mean resistance shows a crossover from the exponential to the power-law length dependence with increasing field strength in agreement with known numerical results. More importantly, unlike the zero-field case the resistance distribution saturates to a Poissonian-limiting form proportional to A‖F‖exp(-A‖F‖ρ) for large sample lengths, where A is constant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An electric field (100 V/cm at 230°C and 150°C) has been applied to ammonium perchlorate (AP)/polystyrene (PS) propellant mixtures in order to understand the low temperature decomposition behavior of the propellant. The charge-carrying species is anionic in nature at 230°C, which could be ClO4−, but is cationic at 150°C, which could be either NH4+ or H+. These results are parallel to that observed for pure ammonium perchlorate (AP) pellets [1]. The burning rate (r' ) of the propellant was found to follow the same trend as that for the thermal decomposition of the propellant on application of an electric field. At 150°C Image was higher at the −ve electrode than at the +ve electrode, but at 230°C just the opposite was observed. Kinetic studies have confirmed that the decomposition of the orthorhombic AP follows two mechanism corresponding to E = 30 kcal mol−1 (180–230°C) and E = 15 kcal mol−1 (150–180°C).