193 resultados para Elasticity modulus
em Indian Institute of Science - Bangalore - Índia
Resumo:
A dynamical instability is observed in experimental studies on micro-channels of rectangular cross-section with smallest dimension 100 and 160 mu m in which one of the walls is made of soft gel. There is a spontaneous transition from an ordered, laminar flow to a chaotic and highly mixed flow state when the Reynolds number increases beyond a critical value. The critical Reynolds number, which decreases as the elasticity modulus of the soft wall is reduced, is as low as 200 for the softest wall used here (in contrast to 1200 for a rigid-walled channel) The instability onset is observed by the breakup of a dye-stream introduced in the centre of the micro-channel, as well as the onset of wall oscillations due to laser scattering from fluorescent beads embedded in the wall of the channel. The mixing time across a channel of width 1.5 mm, measured by dye-stream and outlet conductance experiments, is smaller by a factor of 10(5) than that for a laminar flow. The increased mixing rate comes at very little cost, because the pressure drop (energy requirement to drive the flow) increases continuously and modestly at transition. The deformed shape is reconstructed numerically, and computational fluid dynamics (CFD) simulations are carried out to obtain the pressure gradient and the velocity fields for different flow rates. The pressure difference across the channel predicted by simulations is in agreement with the experiments (within experimental errors) for flow rates where the dye stream is laminar, but the experimental pressure difference is higher than the simulation prediction after dye-stream breakup. A linear stability analysis is carried out using the parallel-flow approximation, in which the wall is modelled as a neo-Hookean elastic solid, and the simulation results for the mean velocity and pressure gradient from the CFD simulations are used as inputs. The stability analysis accurately predicts the Reynolds number (based on flow rate) at which an instability is observed in the dye stream, and it also predicts that the instability first takes place at the downstream converging section of the channel, and not at the upstream diverging section. The stability analysis also indicates that the destabilization is due to the modification of the flow and the local pressure gradient due to the wall deformation; if we assume a parabolic velocity profile with the pressure gradient given by the plane Poiseuille law, the flow is always found to be stable.
Resumo:
Synchrotron-based high-pressure x-ray diffraction measurements indicate that compressibility, a fundamental materials property, can have a size-specific minimum value. The bulk modulus of nanocrystalline titania has a maximum at particle size of 15 nm. This can be explained by dislocation behavior because very high dislocation contents can be achieved when shear stress induced within nanoparticles counters the repulsion between dislocations. As particle size decreases, compression increasingly generates dislocation networks hardened by overlap of strain fields that shield intervening regions from external pressure. However, when particles become too small to sustain high dislocation concentrations, elastic stiffening declines. The compressibility has a minimum at intermediate sizes.
Resumo:
An elasticity solution has been obtained for a long circular sandwich cylindrical shell subjected to axisymmetric radial ring load using Love's stress function approach. Numerical results are presented for different ratios of modulus of elasticity of the layers. The results obtained from this analysis have been compared with those obtained from sandwich shell theory due to Fulton.
Resumo:
Scattering of coherent light from scattering particles causes phase shift to the scattered light. The interference of unscattered and scattered light causes the formation of speckles. When the scattering particles, under the influence of an ultrasound (US) pressure wave, vibrate, the phase shift fluctuates, thereby causing fluctuation in speckle intensity. We use the laser speckle contrast analysis (LSCA) to reconstruct a map of the elastic property (Young's modulus) of soft tissue-mimicking phantom. The displacement of the scatters is inversely related to the Young's modulus of the medium. The elastic properties of soft biological tissues vary, many fold with malignancy. The experimental results show that laser speckle contrast (LSC) is very sensitive to the pathological changes in a soft tissue medium. The experiments are carried out on a phantom with two cylindrical inclusions of sizes 6 mm in diameter, separated by 8 mm between them. Three samples are made. One inclusion has Young's modulus E of 40 kPa. The second inclusion has either a Young's modulus E of 20 kPa, or scattering coefficient of mu'(s), = 3.00 mm(-1) or absorption coefficient of mu(a) = 0.03 mm(-1). The optical absorption (mu(a)), reduced scattering (mu'(s)) coefficient, and the Young's modulus of the background are mu(a) = 0.01 mm(-1), mu'(s) = 1.00 mm(-1) and 12kPa, respectively. The experiments are carried out on all three phantoms. On a phantom with two inclusions of Young's modulus of 20 and 40 kPa, the measured relative speckle image contrasts are 36.55% and 63.72%, respectively. Experiments are repeated on phantoms with inclusions of mu(a) = 0.03 mm-1, E = 40 kPa and mu'(s) = 3.00 mm(-1). The results show that it is possible to detect inclusions with contrasts in optical absorption, optical scattering, and Young's modulus. Studies of the variation of laser speckle contrast with ultrasound driving force for various values of mu(a), mu'(s), and Young's modulus of the tissue mimicking medium are also carried out. (C) 2011 American Institute of Physics. doi:10.1063/1.3592352]
Resumo:
Negatively charged DNA can be compacted by positively charged dendrimers and the degree of compaction is a delicate balance between the strength of the electrostatic interaction and the elasticity of DNA. We report various elastic properties of short double-stranded DNA (dsDNA) and the effect of dendrimer binding using fully atomistic molecular dynamics and numerical simulations. In equilibrium at room temperature, the contour length distribution P(L) and the end-to-end distance distribution P(R) are nearly Gaussian, the former gives an estimate of the stretch modulus gamma(1) of dsDNA in quantitative agreement with the literature value. The bend angle distribution P(.) of the dsDNA also has a Gaussian form and allows to extract a persistence length, L-p of 43 nm. When the dsDNA is compacted by positively charged dendrimer, the stretch modulus stays invariant but the effective bending rigidity estimated from the end-to-end distance distribution decreases dramatically due to backbone charge neutralization of dsDNA by dendrimer. We support our observations with numerical solutions of the worm-like-chain (WLC) model as well as using non-equilibrium dsDNA stretching simulations. These results are helpful in understanding the dsDNA elasticity at short length scales as well as how the elasticity is modulated when dsDNA binds to a charged object such as a dendrimer or protein.
Resumo:
In this paper, we analyse three commonly discussed `flaws' of linearized elasticity theory and attempt to resolve them. The first `flaw' concerns cylindrically orthotropic material models. Since the work of Lekhnitskii (1968), there has been a growing body of work that continues to this day, that shows that infinite stresses arise with the use of a cylindrically orthotropic material model even in the case of linearized elasticity. Besides infinite stresses, interpenetration of matter is also shown to occur. These infinite stresses and interpenetration occur when the ratio of the circumferential Young modulus to the radial Young modulus is less than one. If the ratio is greater than one, then the stresses at the center of a spinning disk are found to be zero (recall that for an isotropic material model, the stresses are maximum at the center). Thus, the stresses go abruptly from a maximum value to a value of zero as the ratio is increased to a value even slightly above one! One of the explanations provided for this extremely anomalous behaviour is the failure of linearized elasticity to satisfy material frame-indifference. However, if this is the true cause, then the anomalous behaviour should also occur with the use of an isotropic material model, where, no such anomalies are observed. We show that the real cause of the problem is elsewhere and also show how these anomalies can be resolved. We also discuss how the formulation of linearized elastodynamics in the case of small deformations superposed on a rigid motion can be given in a succinct manner. Finally, we show how the long-standing problem of devising three compatibility relations instead of six can be resolved.
Resumo:
DNA nanotubes are tubular structures composed of DNA crossover molecules. We present a bottom up approach for the construction and characterization of these structures. Various possible topologies of nanotubes are constructed such as 6-helix, 8-helix and tri-tubes with different sequences and lengths. We have used fully atomistic molecular dynamics simulations to study the structure, stability and elasticity of these structures. Several nanosecond long MD simulations give the microscopic details about DNA nanotubes. Based on the structural analysis of simulation data, we show that 6-helix nanotubes are stable and maintain their tubular structure; while 8-helix nanotubes are flattened to stabilize themselves. We also comment on the sequence dependence and the effect of overhangs. These structures are approximately four times more rigid having a stretch modulus of similar to 4000 pN compared to the stretch modulus of 1000 pN of a DNA double helix molecule of the same length and sequence. The stretch moduli of these nanotubes are also three times larger than those of PX/JX crossover DNA molecules which have stretch moduli in the range of 1500-2000 pN. The calculated persistence length is in the range of a few microns which is close to the reported experimental results on certain classes of DNA nanotubes.
Resumo:
Based on an ultrasound-modulated optical tomography experiment, a direct, quantitative recovery of Young's modulus (E) is achieved from the modulation depth (M) in the intensity autocorrelation. The number of detector locations is limited to two in orthogonal directions, reducing the complexity of the data gathering step whilst ensuring against an impoverishment of the measurement, by employing ultrasound frequency as a parameter to vary during data collection. The M and E are related via two partial differential equations. The first one connects M to the amplitude of vibration of the scattering centers in the focal volume and the other, this amplitude to E. A (composite) sensitivity matrix is arrived at mapping the variation of M with that of E and used in a (barely regularized) Gauss-Newton algorithm to iteratively recover E. The reconstruction results showing the variation of E are presented. (C) 2015 Optical Society of America
Resumo:
Active biological processes like transcription, replication, recombination, DNA repair, and DNA packaging encounter bent DNA. Machineries associated with these processes interact with the DNA at short length (<100 base pair) scale. Thus, the study of elasticity of DNA at such length scale is very important. We use fully atomistic molecular dynamics (MD) simulations along with various theoretical methods to determine elastic properties of dsDNA of different lengths and base sequences. We also study DNA elasticity in nucleosome core particle (NCP) both in the presence and the absence of salt. We determine stretch modulus and persistence length of short dsDNA and nucleosomal DNA from contour length distribution and bend angle distribution, respectively. For short dsDNA, we find that stretch modulus increases with ionic strength while persistence length decreases. Calculated values of stretch modulus and persistence length for DNA are in quantitative agreement with available experimental data. The trend is opposite for NCP DNA. We find that the presence of histone core makes the DNA stiffer and thus making the persistence length 3-4 times higher than the bare DNA. Similarly, we also find an increase in the stretch modulus for the NCP DNA. Our study for the first time reports the elastic properties of DNA when it is wrapped around the histone core in NCP. We further show that the WLC model is inadequate to describe DNA elasticity at short length scale. Our results provide a deeper understanding of DNA mechanics and the methods are applicable to most protein-DNA complexes.
Resumo:
Use of circular hexagonal honeycomb structures and tube assemblies in energy absorption systems has attracted a large number of literature on their characterization under crushing and impact loads. Notwithstanding these, effective shear moduli (G*) required for complete transverse elastic characterization and in analyses of hierarchical structures have received scant attention. In an attempt to fill this void, the present study undertakes to evaluate G* of a generalized circular honeycomb structures and tube assemblies in a diamond array structure (DAS) with no restriction on their thickness. These structures present a potential to realize a spectrum of moduli with minimal modifications, a point of relevance for manufactures and designers. To evaluate G* in this paper, models based on technical theories - thin ring theory and curved beam theory - and rigorous theory of elasticity are investigated and corroborated with FEA employing contact elements. Technical theories which give a good match for thin HCS offer compact expressions for moduli which can be harvested to study sensitivity of moduli on topology. On the other hand, elasticity model offers a very good match over a large range of thickness along with exact analysis of stresses by employing computationally efficient expressions. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The problem of an infinite circular sandwich shell subjected to an a\isymmetric radial line load is investigated using three-dimensional elasticity theory, shell core method, and sandwich shell theory due to Fulton and Schmidt. A comparison of the stresses and displacements with an exact elasticity solution is carried out for various shell parameters in order to clearly bring out the limitations of sandwich shell theories of Fulton and Schmidt as well as the shell core solution.
Resumo:
A long two-layered circular cylinder having a thin orthotropic outer shell and a thick transversely isotropic core subjected to an axisymmetric radialv line load has been analysed. For analysis of the outer shell the classical thin shell theory was adopted and for analysis of the inner core the elasticity theory was used. The continuity of stresses and deformations at the interface has been satisfied by assumming perfect adhesion between the layers. Numerical results have been presented for two different ratios of outer shell thickness to inner radius and for three different ratios of modulus of elasticity in the radial direction of outer shell to inner core. The results have been compared with the elasticity solution of the same problem to bring out the reliability of this hybrid method. References
Efficient implementations of a pseudodynamical stochastic filtering strategy for static elastography
Resumo:
A computationally efficient pseudodynamical filtering setup is established for elasticity imaging (i.e., reconstruction of shear modulus distribution) in soft-tissue organs given statically recorded and partially measured displacement data. Unlike a regularized quasi-Newton method (QNM) that needs inversion of ill-conditioned matrices, the authors explore pseudodynamic extended and ensemble Kalman filters (PD-EKF and PD-EnKF) that use a parsimonious representation of states and bypass explicit regularization by recursion over pseudotime. Numerical experiments with QNM and the two filters suggest that the PD-EnKF is the most robust performer as it exhibits no sensitivity to process noise covariance and yields good reconstruction even with small ensemble sizes.
Resumo:
Under certain specific assumption it has been observed that the basic equations of magneto-elasticity in the case of plane deformation lead to a biharmonic equation, as in the case of the classical plane theory of elasticity. The method of solving boundary value problems has been properly modified and a unified approach in solving such problems has been suggested with special reference to problems relating thin infinite plates with a hole. Closed form expressions have been obtained for the stresses due to a uniform magnetic field present in the plane of deformation of a thin infinite conducting plate with a circular hole, the plate being deformed by a tension acting parallel to the direction of the magnetic field.