221 resultados para Eigenvalue of a graph

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A k-dimensional box is the Cartesian product R-1 X R-2 X ... X R-k where each R-i is a closed interval on the real line. The boxicity of a graph G, denoted as box(G), is the minimum integer k such that G can be represented as the intersection graph of a collection of k-dimensional boxes. A unit cube in k-dimensional space or a k-cube is defined as the Cartesian product R-1 X R-2 X ... X R-k where each R-i is a closed interval oil the real line of the form a(i), a(i) + 1]. The cubicity of G, denoted as cub(G), is the minimum integer k such that G can be represented as the intersection graph of a collection of k-cubes. The threshold dimension of a graph G(V, E) is the smallest integer k such that E can be covered by k threshold spanning subgraphs of G. In this paper we will show that there exists no polynomial-time algorithm for approximating the threshold dimension of a graph on n vertices with a factor of O(n(0.5-epsilon)) for any epsilon > 0 unless NP = ZPP. From this result we will show that there exists no polynomial-time algorithm for approximating the boxicity and the cubicity of a graph on n vertices with factor O(n(0.5-epsilon)) for any epsilon > 0 unless NP = ZPP. In fact all these hardness results hold even for a highly structured class of graphs, namely the split graphs. We will also show that it is NP-complete to determine whether a given split graph has boxicity at most 3. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Entropy is a fundamental thermodynamic property that has attracted a wide attention across domains, including chemistry. Inference of entropy of chemical compounds using various approaches has been a widely studied topic. However, many aspects of entropy in chemical compounds remain unexplained. In the present work, we propose two new information-theoretical molecular descriptors for the prediction of gas phase thermal entropy of organic compounds. The descriptors reflect the bulk and size of the compounds as well as the gross topological symmetry in their structures, all of which are believed to determine entropy. A high correlation () between the entropy values and our information-theoretical indices have been found and the predicted entropy values, obtained from the corresponding statistically significant regression model, have been found to be within acceptable approximation. We provide additional mathematical result in the form of a theorem and proof that might further help in assessing changes in gas phase thermal entropy values with the changes in molecular structures. The proposed information-theoretical molecular descriptors, regression model and the mathematical result are expected to augment predictions of gas phase thermal entropy for a large number of chemical compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article we study the one-dimensional random geometric (random interval) graph when the location of the nodes are independent and exponentially distributed. We derive exact results and limit theorems for the connectivity and other properties associated with this random graph. We show that the asymptotic properties of a graph with a truncated exponential distribution can be obtained using the exponential random geometric graph. © 2007 Wiley Periodicals, Inc. Random Struct. Alg., 2008.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the problem of computing a minimum cycle basis in a directed graph G. The input to this problem is a directed graph whose arcs have positive weights. In this problem a {- 1, 0, 1} incidence vector is associated with each cycle and the vector space over Q generated by these vectors is the cycle space of G. A set of cycles is called a cycle basis of G if it forms a basis for its cycle space. A cycle basis where the sum of weights of the cycles is minimum is called a minimum cycle basis of G. The current fastest algorithm for computing a minimum cycle basis in a directed graph with m arcs and n vertices runs in O(m(w+1)n) time (where w < 2.376 is the exponent of matrix multiplication). If one allows randomization, then an (O) over tilde (m(3)n) algorithm is known for this problem. In this paper we present a simple (O) over tilde (m(2)n) randomized algorithm for this problem. The problem of computing a minimum cycle basis in an undirected graph has been well-studied. In this problem a {0, 1} incidence vector is associated with each cycle and the vector space over F-2 generated by these vectors is the cycle space of the graph. The fastest known algorithm for computing a minimum cycle basis in an undirected graph runs in O(m(2)n + mn(2) logn) time and our randomized algorithm for directed graphs almost matches this running time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rainbow connection number, rc(G), of a connected graph G is the minimum number of colors needed to color its edges so that every pair of vertices is connected by at least one path in which no two edges are colored the same (note that the coloring need not be proper). In this paper we study the rainbow connection number with respect to three important graph product operations (namely the Cartesian product, the lexicographic product and the strong product) and the operation of taking the power of a graph. In this direction, we show that if G is a graph obtained by applying any of the operations mentioned above on non-trivial graphs, then rc(G) a parts per thousand currency sign 2r(G) + c, where r(G) denotes the radius of G and . In general the rainbow connection number of a bridgeless graph can be as high as the square of its radius 1]. This is an attempt to identify some graph classes which have rainbow connection number very close to the obvious lower bound of diameter (and thus the radius). The bounds reported are tight up to additive constants. The proofs are constructive and hence yield polynomial time -factor approximation algorithms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An axis-parallel b-dimensional box is a Cartesian product R-1 x R-2 x ... x R-b where each R-i (for 1 <= i <= b) is a closed interval of the form [a(i), b(i)] on the real line. The boxicity of any graph G, box(G) is the minimum positive integer b such that G can be represented as the intersection graph of axis-parallel b-dimensional boxes. A b-dimensional cube is a Cartesian product R-1 x R-2 x ... x R-b, where each R-i (for 1 <= i <= b) is a closed interval of the form [a(i), a(i) + 1] on the real line. When the boxes are restricted to be axis-parallel cubes in b-dimension, the minimum dimension b required to represent the graph is called the cubicity of the graph (denoted by cub(G)). In this paper we prove that cub(G) <= inverted right perpendicularlog(2) ninverted left perpendicular box(G), where n is the number of vertices in the graph. We also show that this upper bound is tight.Some immediate consequences of the above result are listed below: 1. Planar graphs have cubicity at most 3inverted right perpendicularlog(2) ninvereted left perpendicular.2. Outer planar graphs have cubicity at most 2inverted right perpendicularlog(2) ninverted left perpendicular.3. Any graph of treewidth tw has cubicity at most (tw + 2) inverted right perpendicularlog(2) ninverted left perpendicular. Thus, chordal graphs have cubicity at most (omega + 1) inverted right erpendicularlog(2) ninverted left perpendicular and circular arc graphs have cubicity at most (2 omega + 1)inverted right perpendicularlog(2) ninverted left perpendicular, where omega is the clique number.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bond graph is an apt modelling tool for any system working across multiple energy domains. Power electronics system modelling is usually the study of the interplay of energy in the domains of electrical, mechanical, magnetic and thermal. The usefulness of bond graph modelling in power electronic field has been realised by researchers. Consequently in the last couple of decades, there has been a steadily increasing effort in developing simulation tools for bond graph modelling that are specially suited for power electronic study. For modelling rotating magnetic fields in electromagnetic machine models, a support for vector variables is essential. Unfortunately, all bond graph simulation tools presently provide support only for scalar variables. We propose an approach to provide complex variable and vector support to bond graph such that it will enable modelling of polyphase electromagnetic and spatial vector systems. We also introduced a rotary gyrator element and use it along with the switched junction for developing the complex/vector variable's toolbox. This approach is implemented by developing a complex S-function tool box in Simulink inside a MATLAB environment This choice has been made so as to synthesise the speed of S-function, the user friendliness of Simulink and the popularity of MATLAB.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A k-cube (or ``a unit cube in k dimensions'') is defined as the Cartesian product R-1 x . . . x R-k where R-i (for 1 <= i <= k) is an interval of the form [a(i), a(i) + 1] on the real line. The k-cube representation of a graph G is a mapping of the vertices of G to k-cubes such that the k-cubes corresponding to two vertices in G have a non-empty intersection if and only if the vertices are adjacent. The cubicity of a graph G, denoted as cub(G), is defined as the minimum dimension k such that G has a k-cube representation. An interval graph is a graph that can be represented as the intersection of intervals on the real line - i. e., the vertices of an interval graph can be mapped to intervals on the real line such that two vertices are adjacent if and only if their corresponding intervals overlap. We show that for any interval graph G with maximum degree Delta, cub(G) <= inverted right perpendicular log(2) Delta inverted left perpendicular + 4. This upper bound is shown to be tight up to an additive constant of 4 by demonstrating interval graphs for which cubicity is equal to inverted right perpendicular log(2) Delta inverted left perpendicular.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A k-dimensional box is the Cartesian product R-1 x R-2 x ... x R-k where each R-i is a closed interval on the real line. The boxicity of a graph G, denoted as box(G) is the minimum integer k such that G is the intersection graph of a collection of k-dimensional boxes. Halin graphs are the graphs formed by taking a tree with no degree 2 vertex and then connecting its leaves to form a cycle in such a way that the graph has a planar embedding. We prove that if G is a Halin graph that is not isomorphic to K-4, then box(G) = 2. In fact, we prove the stronger result that if G is a planar graph formed by connecting the leaves of any tree in a simple cycle, then box(G) = 2 unless G is isomorphic to K4 (in which case its boxicity is 1).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The research in software science has so far been concentrated on three measures of program complexity: (a) software effort; (b) cyclomatic complexity; and (c) program knots. In this paper we propose a measure of the logical complexity of programs in terms of the variable dependency of sequence of computations, inductive effort in writing loops and complexity of data structures. The proposed complexity mensure is described with the aid of a graph which exhibits diagrammatically the dependence of a computation at a node upon the computation of other (earlier) nodes. Complexity measures of several example programs have been computed and the related issues have been discussed. The paper also describes the role played by data structures in deciding the program complexity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic (2-colored) cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a'(G). Let Delta = Delta(G) denote the maximum degree of a vertex in a graph G. A complete bipartite graph with n vertices on each side is denoted by K-n,K-n. Alon, McDiarmid and Reed observed that a'(K-p-1,K-p-1) = p for every prime p. In this paper we prove that a'(K-p,K-p) <= p + 2 = Delta + 2 when p is prime. Basavaraju, Chandran and Kummini proved that a'(K-n,K-n) >= n + 2 = Delta + 2 when n is odd, which combined with our result implies that a'(K-p,K-p) = p + 2 = Delta + 2 when p is an odd prime. Moreover we show that if we remove any edge from K-p,K-p, the resulting graph is acyclically Delta + 1 = p + 1-edge-colorable. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a'(G). It was conjectured by Alon, Sudakov, and Zaks that for any simple and finite graph G, a'(G) <= Delta+2, where Delta=Delta(G) denotes the maximum degree of G. We prove the conjecture for connected graphs with Delta(G)<= 4, with the additional restriction that m <= 2n-1, where n is the number of vertices and m is the number of edges in G. Note that for any graph G, m <= 2n, when Delta(G)<= 4. It follows that for any graph G if Delta(G)<= 4, then a'(G) <= 7.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An axis-parallel k-dimensional box is a Cartesian product R-1 x R-2 x...x R-k where R-i (for 1 <= i <= k) is a closed interval of the form [a(i), b(i)] on the real line. For a graph G, its boxicity box(G) is the minimum dimension k, such that G is representable as the intersection graph of (axis-parallel) boxes in k-dimensional space. The concept of boxicity finds applications in various areas such as ecology, operations research etc. A number of NP-hard problems are either polynomial time solvable or have much better approximation ratio on low boxicity graphs. For example, the max-clique problem is polynomial time solvable on bounded boxicity graphs and the maximum independent set problem for boxicity d graphs, given a box representation, has a left perpendicular1 + 1/c log n right perpendicular(d-1) approximation ratio for any constant c >= 1 when d >= 2. In most cases, the first step usually is computing a low dimensional box representation of the given graph. Deciding whether the boxicity of a graph is at most 2 itself is NP-hard. We give an efficient randomized algorithm to construct a box representation of any graph G on n vertices in left perpendicular(Delta + 2) ln nright perpendicular dimensions, where Delta is the maximum degree of G. This algorithm implies that box(G) <= left perpendicular(Delta + 2) ln nright perpendicular for any graph G. Our bound is tight up to a factor of ln n. We also show that our randomized algorithm can be derandomized to get a polynomial time deterministic algorithm. Though our general upper bound is in terms of maximum degree Delta, we show that for almost all graphs on n vertices, their boxicity is O(d(av) ln n) where d(av) is the average degree.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and it is denoted by a′(G). From a result of Burnstein it follows that all subcubic graphs are acyclically edge colorable using five colors. This result is tight since there are 3-regular graphs which require five colors. In this paper we prove that any non-regular connected graph of maximum degree 3 is acyclically edge colorable using at most four colors. This result is tight since all edge maximal non-regular connected graphs of maximum degree 3 require four colors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The intention of this note is to motivate the researchers to study Hadwiger's conjecture for circular arc graphs. Let η(G) denote the largest clique minor of a graph G, and let χ(G) denote its chromatic number. Hadwiger's conjecture states that η(G)greater-or-equal, slantedχ(G) and is one of the most important and difficult open problems in graph theory. From the point of view of researchers who are sceptical of the validity of the conjecture, it is interesting to study the conjecture for graph classes where η(G) is guaranteed not to grow too fast with respect to χ(G), since such classes of graphs are indeed a reasonable place to look for possible counterexamples. We show that in any circular arc graph G, η(G)less-than-or-equals, slant2χ(G)−1, and there is a family with equality. So, it makes sense to study Hadwiger's conjecture for this family.