52 resultados para Eech closure spaces
em Indian Institute of Science - Bangalore - Índia
Resumo:
This paper presents a simple second-order, curvature based mobility analysis of planar curves in contact. The underlying theory deals with penetration and separation of curves with multiple contacts, based on relative configuration of osculating circles at points of contact for a second-order rotation about each point of the plane. Geometric and analytical treatment of mobility analysis is presented for generic as well as special contact geometries. For objects with a single contact, partitioning of the plane into four types of mobility regions has been shown. Using point based composition operations based on dual-number matrices, analysis has been extended to computationally handle multiple contacts scenario. A novel color coded directed line has been proposed to capture the contact scenario. Multiple contacts mobility is obtained through intersection of the mobility half-spaces. It is derived that mobility region comprises a pair of unbounded or a single bounded convex polygon. The theory has been used for analysis and synthesis of form closure configurations, revolute and prismatic kinematic pairs. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Numerical analysis of cracked structures often involves numerical estimation of stress intensity factors (SIFs) at a crack tip/front. A newly developed formulation called universal crack closure integral (UCCI) for the evaluation of potential energy release rates (PERRs) and the corresponding SIFs is presented in this paper. Unlike the existing element dedicated forms of crack closure integrals (MCCI, VCCI) with application limited to finite element analysis, this new numerical SIF/PERR estimation technique is independent of the basic stress analysis procedure, making it universally applicable. The second merit of this procedure is that it avoids the generally error-producing zones close to the crack tip/front singularity. The UCCI procedure, based on Irwin's original CCI, is formulated and explored using a simple 2D problem of a straight crack in an infinite sheet. It is then applied to some three-dimensional crack geometries with the stresses and displacements obtained from a boundary element program.
Resumo:
A fuzzy waste-load allocation model, FWLAM, is developed for water quality management of a river system using fuzzy multiple-objective optimization. An important feature of this model is its capability to incorporate the aspirations and conflicting objectives of the pollution control agency and dischargers. The vagueness associated with specifying the water quality criteria and fraction removal levels is modeled in a fuzzy framework. The goals related to the pollution control agency and dischargers are expressed as fuzzy sets. The membership functions of these fuzzy sets are considered to represent the variation of satisfaction levels of the pollution control agency and dischargers in attaining their respective goals. Two formulations—namely, the MAX-MIN and MAX-BIAS formulations—are proposed for FWLAM. The MAX-MIN formulation maximizes the minimum satisfaction level in the system. The MAX-BIAS formulation maximizes a bias measure, giving a solution that favors the dischargers. Maximization of the bias measure attempts to keep the satisfaction levels of the dischargers away from the minimum satisfaction level and that of the pollution control agency close to the minimum satisfaction level. Most of the conventional water quality management models use waste treatment cost curves that are uncertain and nonlinear. Unlike such models, FWLAM avoids the use of cost curves. Further, the model provides the flexibility for the pollution control agency and dischargers to specify their aspirations independently.
Resumo:
This paper presents the proper computational approach for the estimation of strain energy release rates by modified crack closure integral (MCCI). In particular, in the estimation of consistent nodal force vectors used in the MCCI expressions for quarter-point singular elements (wherein all the nodal force vectors participate in computation of strain energy release rates by MCCI). The numerical example of a centre crack tension specimen under uniform loading is presented to illustrate the approach.
Resumo:
Recent studies (I-7) clearly indicate a strong dependence of fatigue threshold parameter, A K on grain size in several alloy systems. Attempts to explain these observations on the basis of crat~tortuosity (1,8), fracture surface roughness (5,9) and crack closure (6) appear to present a fairly clear picture of the mechanisms that cause a reduction in crack growth rates at threshold. In general, it has been shown that coarse grained microstructures exhibit higher fatigue threshold in low carbon steels (1,5) aluminium alloys (7) and titanium alloys (6). In spite of these observations, there exists (10-1#) considerable uncertainity about the manner in which the AK~L depends on prior austenitic grain size in quenched and tempered steels. Studies in quenched and tempered steels demonstrating both an increase (3,12,14) as well as a decrease (11,12) in AKth with an increase in prior austenitic grain size can be sought to illustrate this point. Occasionally , the absence of any sensitivity of AKth to the variations in prior austenitJc grain size has also been reported (11,13). While a few investigators (5-7) comfortably rationalised the grain size effects on AK~L on the basis of crack closure by a comparison in terms of the closure-free component of the thresho~Ifc~, AK -f such an approach has yet to be extended to high strength steels, An attempt has been made in t~et ,pthrg sent study to explai. n the effect of pri, or austeniti.c grain size on &Kth on the basis of crack closure measurements in a high strength steel.
Resumo:
The problem of decaying states and resonances is examined within the framework of scattering theory in a rigged Hilbert space formalism. The stationary free,''in,'' and ''out'' eigenvectors of formal scattering theory, which have a rigorous setting in rigged Hilbert space, are considered to be analytic functions of the energy eigenvalue. The value of these analytic functions at any point of regularity, real or complex, is an eigenvector with eigenvalue equal to the position of the point. The poles of the eigenvector families give origin to other eigenvectors of the Hamiltonian: the singularities of the ''out'' eigenvector family are the same as those of the continued S matrix, so that resonances are seen as eigenvectors of the Hamiltonian with eigenvalue equal to their location in the complex energy plane. Cauchy theorem then provides for expansions in terms of ''complete'' sets of eigenvectors with complex eigenvalues of the Hamiltonian. Applying such expansions to the survival amplitude of a decaying state, one finds that resonances give discrete contributions with purely exponential time behavior; the background is of course present, but explicitly separated. The resolvent of the Hamiltonian, restricted to the nuclear space appearing in the rigged Hilbert space, can be continued across the absolutely continuous spectrum; the singularities of the continuation are the same as those of the ''out'' eigenvectors. The free, ''in'' and ''out'' eigenvectors with complex eigenvalues and those corresponding to resonances can be approximated by physical vectors in the Hilbert space, as plane waves can. The need for having some further physical information in addition to the specification of the total Hamiltonian is apparent in the proposed framework. The formalism is applied to the Lee–Friedrichs model and to the scattering of a spinless particle by a local central potential. Journal of Mathematical Physics is copyrighted by The American Institute of Physics.
Resumo:
The Gaussian probability closure technique is applied to study the random response of multidegree of freedom stochastically time varying systems under non-Gaussian excitations. Under the assumption that the response, the coefficient and the excitation processes are jointly Gaussian, deterministic equations are derived for the first two response moments. It is further shown that this technique leads to the best Gaussian estimate in a minimum mean square error sense. An example problem is solved which demonstrates the capability of this technique for handling non-linearity, stochastic system parameters and amplitude limited responses in a unified manner. Numerical results obtained through the Gaussian closure technique compare well with the exact solutions.
Resumo:
An experimental technique is proposed for the estimation of crack length as well as crack closure/opening stress during fatigue crack growth. A specially designed, single cantilever, crack opening displacement gauge is used to monitor these variables during fatigue crack propagation testing. The technique was experimentally validated through electronfractography.
Resumo:
Let Wm,p denote the Sobolev space of functions on Image n whose distributional derivatives of order up to m lie in Lp(Image n) for 1 less-than-or-equals, slant p less-than-or-equals, slant ∞. When 1 < p < ∞, it is known that the multipliers on Wm,p are the same as those on Lp. This result is true for p = 1 only if n = 1. For, we prove that the integrable distributions of order less-than-or-equals, slant1 whose first order derivatives are also integrable of order less-than-or-equals, slant1, belong to the class of multipliers on Wm,1 and there are such distributions which are not bounded measures. These distributions are also multipliers on Lp, for 1 < p < ∞. Moreover, they form exactly the multiplier space of a certain Segal algebra. We have also proved that the multipliers on Wm,l are necessarily integrable distributions of order less-than-or-equals, slant1 or less-than-or-equals, slant2 accordingly as m is odd or even. We have obtained the multipliers from L1(Image n) into Wm,p, 1 less-than-or-equals, slant p less-than-or-equals, slant ∞, and the multiplier space of Wm,1 is realised as a dual space of certain continuous functions on Image n which vanish at infinity.
Resumo:
Abstract is not available.
Resumo:
Learning automata are adaptive decision making devices that are found useful in a variety of machine learning and pattern recognition applications. Although most learning automata methods deal with the case of finitely many actions for the automaton, there are also models of continuous-action-set learning automata (CALA). A team of such CALA can be useful in stochastic optimization problems where one has access only to noise-corrupted values of the objective function. In this paper, we present a novel formulation for noise-tolerant learning of linear classifiers using a CALA team. We consider the general case of nonuniform noise, where the probability that the class label of an example is wrong may be a function of the feature vector of the example. The objective is to learn the underlying separating hyperplane given only such noisy examples. We present an algorithm employing a team of CALA and prove, under some conditions on the class conditional densities, that the algorithm achieves noise-tolerant learning as long as the probability of wrong label for any example is less than 0.5. We also present some empirical results to illustrate the effectiveness of the algorithm.
Resumo:
The images of Hermite and Laguerre-Sobolev spaces under the Hermite and special Hermite semigroups (respectively) are characterized. These are used to characterize the image of Schwartz class of rapidly decreasing functions f on R-n and C-n under these semigroups. The image of the space of tempered distributions is also considered and a Paley-Wiener theorem for the windowed (short-time) Fourier transform is proved.
Resumo:
In this paper, we study approximatively τ-compact and τ-strongly Chebyshev sets, where τ is the norm or the weak topology. We show that the metric projection onto τ-strongly Chebyshev sets are norm-τ continuous. We characterize approximatively τ-compact and τ-strongly Chebyshev hyperplanes and use them to characterize factor reflexive proximinal subspaces in τ-almost locally uniformly rotund spaces. We also prove some stability results on approximatively τ-compact and τ-strongly Chebyshev subspaces.
Resumo:
In this paper, we show existence and uniqueness of a solution to a functional differential equation with infinite delay. We choose an appropriate Frechet space so as to cover a large class of functions to be used as initial functions to obtain existence and uniqueness of solutions.