6 resultados para Education Science
em Indian Institute of Science - Bangalore - Índia
Resumo:
Spatial Decision Support System (SDSS) assist in strategic decision-making activities considering spatial and temporal variables, which help in Regional planning. WEPA is a SDSS designed for assessment of wind potential spatially. A wind energy system transforms the kinetic energy of the wind into mechanical or electrical energy that can be harnessed for practical use. Wind energy can diversify the economies of rural communities, adding to the tax base and providing new types of income. Wind turbines can add a new source of property value in rural areas that have a hard time attracting new industry. Wind speed is extremely important parameter for assessing the amount of energy a wind turbine can convert to electricity: The energy content of the wind varies with the cube (the third power) of the average wind speed. Estimation of the wind power potential for a site is the most important requirement for selecting a site for the installation of a wind electric generator and evaluating projects in economic terms. It is based on data of the wind frequency distribution at the site, which are collected from a meteorological mast consisting of wind anemometer and a wind vane and spatial parameters (like area available for setting up wind farm, landscape, etc.). The wind resource is governed by the climatology of the region concerned and has large variability with reference to space (spatial expanse) and time (season) at any fixed location. Hence the need to conduct wind resource surveys and spatial analysis constitute vital components in programs for exploiting wind energy. SDSS for assessing wind potential of a region / location is designed with user friendly GUI’s (Graphic User Interface) using VB as front end with MS Access database (backend). Validation and pilot testing of WEPA SDSS has been done with the data collected for 45 locations in Karnataka based on primary data at selected locations and data collected from the meteorological observatories of the India Meteorological Department (IMD). Wind energy and its characteristics have been analysed for these locations to generate user-friendly reports and spatial maps. Energy Pattern Factor (EPF) and Power Densities are computed for sites with hourly wind data. With the knowledge of EPF and mean wind speed, mean power density is computed for the locations with only monthly data. Wind energy conversion systems would be most effective in these locations during May to August. The analyses show that coastal and dry arid zones in Karnataka have good wind potential, which if exploited would help local industries, coconut and areca plantations, and agriculture. Pre-monsoon availability of wind energy would help in irrigating these orchards, making wind energy a desirable alternative.
Resumo:
Renewable energy resources are those having a cycling time less than 100 years and are renewed by the nature and their supply exceeds the rate of consumption. Renewable energy systems use resources that are constantly replaced in nature and are usually less polluting. In order to tap the potential of renewable energy sources, there is a need to assess the availability of resources spatially as well as temporally. Geographic Information Systems (GIS) along with Remote Sensing (RS) helps in mapping on spatial and temporal scales of the resources and demand. The spatial database of resource availability and the demand would help in the regional energy planning. This paper discusses the application of geographical information system (GIS) to map the solar potential in Karnataka state, India. Regions suitable for tapping solar energy are mapped on the basis of global solar radiation data, and this analysis provides a picture of the potential. The study identifies that Coastal parts of Karnataka with the higher global solar radiation is ideally suited for harvesting solar energy. The potential analysis reveals that, maximum global solar radiation is in districts such as Uttara Kannada and Dakshina Kannada. Global solar radiation in Uttara Kannada during summer, monsoon and winter are 6.31, 4.40 and 5.48 kWh/sq.m, respectively. Similarly, Dakshina Kannada has 6.16, 3.89 and 5.21 kWh/sq.m during summer, monsoon and winter.
Resumo:
Electricity appears to be the energy carrier of choice for modern economics since growth in electricity has outpaced growth in the demand for fuels. A decision maker (DM) for accurate and efficient decisions in electricity distribution requires the sector wise and location wise electricity consumption information to predict the requirement of electricity. In this regard, an interactive computer-based Decision Support System (DSS) has been developed to compile, analyse and present the data at disaggregated levels for regional energy planning. This helps in providing the precise information needed to make timely decisions related to transmission and distribution planning leading to increased efficiency and productivity. This paper discusses the design and implementation of a DSS, which facilitates to analyse the consumption of electricity at various hierarchical levels (division, taluk, sub division, feeder) for selected periods. This DSS is validated with the data of transmission and distribution systems of Kolar district in Karnataka State, India.