16 resultados para Economic rationalization
em Indian Institute of Science - Bangalore - Índia
Resumo:
India's energy challenges are multi-pronged. They are manifested through growing demand for modern energy carriers, a fossil fuel dominated energy system facing a severe resource crunch, the need for creating access to quality energy for the large section of deprived population, vulnerable energy security, local and global pollution regimes and the need for sustaining economic development. Renewable energy is considered as one of the most promising alternatives. Recognizing this potential, India has been implementing one of the largest renewable energy programmes in the world. Among the renewable energy technologies. bioenergy has a large diverse portfolio including efficient biomass stoves, biogas, biomass combustion and gasification and process heat and liquid fuels. India has also formulated and implemented a number of innovative policies and programmes to promote bioenergy technologies. However, according to some preliminary studies, the success rate is marginal compared to the potential available. This limited success is a clear indicator of the need for a serious reassessment of the bioenergy programme. Further, a realization of the need for adopting a sustainable energy path to address the above challenges will be the guiding force in this reassessment. In this paper an attempt is made to consider the potential of bioenergy to meet the rural energy needs: (I) biomass combustion and gasification for electricity; (2) biomethanation for cooking energy (gas) and electricity; and (3) efficient wood-burning devices for cooking. The paper focuses on analysing the effectiveness of bioenergy in creating this rural energy access and its sustainability in the long run through assessing: the demand for bioenergy and potential that could be created; technologies, status of commercialization and technology transfer and dissemination in India; economic and environmental performance and impacts: bioenergy policies, regulatory measures and barrier analysis. The whole assessment aims at presenting bioenergy as an integral part of a sustainable energy strategy for India. The results show that bioenergy technology (BET) alternatives compare favourably with the conventional ones. The cost comparisons show that the unit costs of BET alternatives are in the range of 15-187% of the conventional alternatives. The climate change benefits in terms of carbon emission reductions are to the tune of 110 T C per year provided the available potential of BETs are utilized.
Resumo:
Provision of modern energy services for cooking (with gaseous fuels)and lighting (with electricity) is an essential component of any policy aiming to address health, education or welfare issues; yet it gets little attention from policy-makers. Secure, adequate, low-cost energy of quality and convenience is core to the delivery of these services. The present study analyses the energy consumption pattern of Indian domestic sector and examines the urban-rural divide and income energy linkage. A comprehensive analysis is done to estimate the cost for providing modern energy services to everyone by 2030. A public-private partnership-driven business model, with entrepreneurship at the core, is developed with institutional, financing and pricing mechanisms for diffusion of energy services. This approach, termed as EMPOWERS (entrepreneurship model for provision of wholesome energy-related basic services), if adopted, can facilitate large-scale dissemination of energy-efficient and renewable technologies like small-scale biogas/biofuel plants, and distributed power generation technologies to provide clean, safe, reliable and sustainable energy to rural households and urban poor. It is expected to integrate the processes of market transformation and entrepreneurship development involving government, NGOs, financial institutions and community groups as stakeholders. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Inventory management (IM) has a decisive role in the enhancement of manufacturing industry's competitiveness. Therefore, major manufacturing industries are following IM practices with the intention of improving their performance. However, the effort to introduce IM in SMEs is very limited due to lack of initiation, expertise, and financial constraints. This paper aims to provide a guideline for entrepreneurs in enhancing their IM performance, as it presents the results of a survey based study carried out for machine tool Small and Medium Enterprises (SMEs) in Bangalore. Having established the significance of inventory as an input, we probed the relationship between IM performance and economic performance of these SMEs. To the extent possible all the factors of production and performance indicators were deliberately considered in pure economic terms. All economic performance indicators adopted seem to have a positive and significant association with IM performance in SMEs. On the whole, we found that SMEs which are IM efficient are likely to perform better on the economic front also and experience higher returns to scale.
Resumo:
Trans-national corporations (TNCs) expanding their production bases to developing countries having better conditions of manufacturing and domestic markets provide increasing opportunities for local small and medium enterprises (SMEs) to have subcontracting relationships with these TNCs Even though some theoretical and a few empirical studies throw light on the nature of assistance provided by TNCs to local SMEs through subcontracting relationships none of the studies so far quantitatively analysed the role of this assistance on the innovative performance of SMEs leading to better economic performance This paper probes the extent and diversity of assistance received by SMEs from a TNC through subcontracting and its influence on technological innovations and economic performance of SMEs in the Indian automobile industry Indian SMEs were able to receive mainly product related and purchase process assistance thereby implying that subcontracting is largely confined to purchase-supply relationships However assistance received through subcontracting is beneficial as It promoted technological innovations of SMEs the higher the degree of assistance the higher the level of innovations carried out by these SMEs which in turn facilitated their economic performance Thus this paper substantiates in the Indian context that subcontracting relationship with a TNC can be an important source of technological innovations and enhanced economic performance for SMEs (C) 2010 Elsevier Ltd All rights reserved
Resumo:
The forestry sector provides a number of climate change mitigation options. Apart from this ecological benefit, it has significant social and economic relevance. Implementation of forestry options requires large investments and sustained long-term planning. Thus there is a need for a detailed analysis of forestry options to understand their implications on stock and flow of carbon, required investments, value of forest wealth, contribution to GNP and livelihood, demand management, employment and foreign trade. There is a need to evaluate the additional spending on forestry by analysing the environmental (particularly carbon abatement), social and economic benefits. The biomass needs for India are expected to increase by two to three times by 2020. Depending upon the forest types, ownership patterns and land use patterns, feasible forestry options are identified. It is found among many supply options to be feasible to meet the 'demand based needs' with a mix of management options, species choices and organisational set up. A comparative static framework is used to analyze the macro-economic impacts. Forestry accounts for 1.84% of GNP in India. It is characterized by significant forward industrial linkages and least backward linkage. Forestry generates about 36 million person years of employment annually. India imports Rs. 15 billion worth of forest based materials annually. Implementation of the demand based forestry options can lead to a number of ecological, economic and institutional changes. The notable ones are: enhancement of C stock from 9578 to 17 094 Mt and a net annual C-sequestration from 73 to 149 Mt after accounting for all emissions; a trebling of the output of forestry sector from Rs. 49 billion to Rs. 146 billion annually; an increase in GDP contribution of forestry from Rs. 32 billion to Rs. 105 billion over a period of 35 years; an increase in annual employment level by 23 million person years, emergence of forestry as a net contributor of foreign exchange through trading of forestry products; and an increase in economic value of forest capital stock by Rs. 7260 billion with a cost benefit analysis showing forestry as a profitable option. Implementation of forestry options calls for an understanding of current forest policies and barriers which are analyzed and a number of policy options are suggested. (C) 1997 Elsevier Science B.V.
Resumo:
Wetlands are the most productive ecosystems, recognized globally for its vital role in sustaining a wide array of biodiversity and provide goods and services. However despite their important role in maintaining the ecology and economy, wetlands in India are endangered by inattention and lack of appreciation for their role. Increased anthropogenic activities such as intense agriculture practices, indiscriminate disposal of industrial effluents and sewage wastes have altered the physical, chemical as well as biological integrity of the ecosystem. This has resulted in the ecological degradation, which is evident from the current ecosystem valuation of Varthur wetland. Global valuation of coastal wetland ecosystem shows a total of 14,785/ha US$ annual economic value. An earlier study of relatively pristine wetland in Bangalore shows the value of Rs. 10,435/ha/day while the polluted wetland shows the value of Rs.20/ha/day. In contrast to this, Varthur, a sewage fed wetland has a value of Rs.118.9/ha/day. The pollutants and subsequent contamination of the wetland has telling effects such as disappearance of native species, dominance of invasive exotic species (such as African catfish), in addition to profuse breeding of disease vectors and pathogens. Water quality analysis revealed of high phosphates (4.22-5.76 ppm) level in addition to the enhanced BOD (119-140 ppm) and decreased DO (0-1.06 ppm). The amplified decline of ecosystem goods and services with degradation of water quality necessitates the implementation of sustainable management strategies to recover the lost wetland benefits.
Resumo:
Wetlands are the most productive ecosystems, recognized globally for its vital role in sustaining a wide array of biodiversity and provide goods and services. However despite their important role in maintaining the ecology and economy, wetlands in India are endangered by inattention and lack of appreciation for their role. Increased anthropogenic activities such as intense agriculture practices, indiscriminate disposal of industrial effluents and sewage wastes have altered the physical, chemical as well as biological integrity of the ecosystem. This has resulted in the ecological degradation, which is evident from the current ecosystem valuation of Varthur wetland. Global valuation of coastal wetland ecosystem shows a total of 14,785/ha US$ annual economic value. An earlier study of relatively pristine wetland in Bangalore shows the value of Rs. 10,435/ha/day while the polluted wetland shows the value of Rs.20/ha/day. In contrast to this, Varthur, a sewage fed wetland has a value of Rs.118.9/ha/day. The pollutants and subsequent contamination of the wetland has telling effects such as disappearance of native species, dominance of invasive exotic species (such as African catfish), in addition to profuse breeding of disease vectors and pathogens. Water quality analysis revealed of high phosphates (4.22-5.76 ppm) level in addition to the enhanced BOD (119-140 ppm) and decreased DO (0-1.06 ppm). The amplified decline of ecosystem goods and services with degradation of water quality necessitates the implementation of sustainable management strategies to recover the lost wetland benefits.
Resumo:
Resistance to therapy limits the effectiveness of drug treatment in many diseases. Drug resistance can be considered as a successful outcome of the bacterial struggle to survive in the hostile environment of a drug-exposed cell. An important mechanism by which bacteria acquire drug resistance is through mutations in the drug target. Drug resistant strains (multi-drug resistant and extensively drug resistant) of Mycobacterium tuberculosis are being identified at alarming rates, increasing the global burden of tuberculosis. An understanding of the nature of mutations in different drug targets and how they achieve resistance is therefore important. An objective of this study is to first decipher sequence as well as structural bases for the observed resistance in known drug resistant mutants and then to predict positions in each target that are more prone to acquiring drug resistant mutations. A curated database containing hundreds of mutations in the 38 drug targets of nine major clinical drugs, associated with resistance is studied here. Mutations have been classified into those that occur in the binding site itself, those that occur in residues interacting with the binding site and those that occur in outer zones. Structural models of the wild type and mutant forms of the target proteins have been analysed to seek explanations for reduction in drug binding. Stability analysis of an entire array of 19 mutations at each of the residues for each target has been computed using structural models. Conservation indices of individual residues, binding sites and whole proteins are computed based on sequence conservation analysis of the target proteins. The analyses lead to insights about which positions in the polypeptide chain have a higher propensity to acquire drug resistant mutations. Thus critical insights can be obtained about the effect of mutations on drug binding, in terms of which amino acid positions and therefore which interactions should not be heavily relied upon, which in turn can be translated into guidelines for modifying the existing drugs as well as for designing new drugs. The methodology can serve as a general framework to study drug resistant mutants in other micro-organisms as well.
Resumo:
Tradeoffs are examined between mitigating black carbon (BC) and carbon dioxide (CO2) for limiting peak global mean warming, using the following set of methods. A two-box climate model is used to simulate temperatures of the atmosphere and ocean for different rates of mitigation. Mitigation rates for BC and CO2 are characterized by respective timescales for e-folding reduction in emissions intensity of gross global product. There are respective emissions models that force the box model. Lastly there is a simple economics model, with cost of mitigation varying inversely with emission intensity. Constant mitigation timescale corresponds to mitigation at a constant annual rate, for example an e-folding timescale of 40 years corresponds to 2.5% reduction each year. Discounted present cost depends only on respective mitigation timescale and respective mitigation cost at present levels of emission intensity. Least-cost mitigation is posed as choosing respective e-folding timescales, to minimize total mitigation cost under a temperature constraint (e.g. within 2 degrees C above preindustrial). Peak warming is more sensitive to mitigation timescale for CO2 than for BC. Therefore rapid mitigation of CO2 emission intensity is essential to limiting peak warming, but simultaneous mitigation of BC can reduce total mitigation expenditure. (c) 2015 Elsevier B.V. All rights reserved.