100 resultados para Ecological complexity
em Indian Institute of Science - Bangalore - Índia
Resumo:
A major question in current network science is how to understand the relationship between structure and functioning of real networks. Here we present a comparative network analysis of 48 wasp and 36 human social networks. We have compared the centralisation and small world character of these interaction networks and have studied how these properties change over time. We compared the interaction networks of (1) two congeneric wasp species (Ropalidia marginata and Ropalidia cyathiformis), (2) the queen-right (with the queen) and queen-less (without the queen) networks of wasps, (3) the four network types obtained by combining (1) and (2) above, and (4) wasp networks with the social networks of children in 36 classrooms. We have found perfect (100%) centralisation in a queen-less wasp colony and nearly perfect centralisation in several other queen-less wasp colonies. Note that the perfectly centralised interaction network is quite unique in the literature of real-world networks. Differences between the interaction networks of the two wasp species are smaller than differences between the networks describing their different colony conditions. Also, the differences between different colony conditions are larger than the differences between wasp and children networks. For example, the structure of queen-right R. marginata colonies is more similar to children social networks than to that of their queen-less colonies. We conclude that network architecture depends more on the functioning of the particular community than on taxonomic differences (either between two wasp species or between wasps and humans).
Resumo:
Dominance and subordinate behaviors are important ingredients in the social organizations of group living animals. Behavioral observations on the two eusocial species Ropalidia marginata and Ropalidia cyathiformis suggest varying complexities in their social systems. The queen of R. cyathiformis is an aggressive individual who usually holds the top position in the dominance hierarchy although she does not necessarily show the maximum number of acts of dominance, while the R. marginata queen rarely shows aggression and usually does not hold the top position in the dominance hierarchy of her colony. In R. marginata, more workers are involved in dominance-subordinate interactions as compared to R. cyathiformis. These differences are reflected in the distribution of dominance-subordinate interactions among the hierarchically ranked individuals in both the species. The percentage of dominance interactions decreases gradually with hierarchical ranks in R. marginata while in R. cyathiformis it first increases and then decreases. We use an agent-based model to investigate the underlying mechanism that could give rise to the observed patterns for both the species. The model assumes, besides some non-interacting individuals, the interaction probabilities of the agents depend on their pre-differentiated winning abilities. Our simulations show that if the queen takes up a strategy of being involved in a moderate number of dominance interactions, one could get the pattern similar to R. cyathiformis, while taking up the strategy of very low interactions by the queen could lead to the pattern of R. marginata. We infer that both the species follow a common interaction pattern, while the differences in their social organization are due to the slight changes in queen as well as worker strategies. These changes in strategies are expected to accompany the evolution of more complex societies from simpler ones.
Resumo:
We consider the problem of deciding whether the output of a boolean circuit is determined by a partial assignment to its inputs. This problem is easily shown to be hard, i.e., co-Image Image -complete. However, many of the consequences of a partial input assignment may be determined in linear time, by iterating the following step: if we know the values of some inputs to a gate, we can deduce the values of some outputs of that gate. This process of iteratively deducing some of the consequences of a partial assignment is called propagation. This paper explores the parallel complexity of propagation, i.e., the complexity of determining whether the output of a given boolean circuit is determined by propagating a given partial input assignment. We give a complete classification of the problem into those cases that are Image -complete and those that are unlikely to be Image complete.
Resumo:
Animals often behave in a profligate fashion and decimate the populations of plants and animals they depend upon. They may, however, evolve prudent behaviour under special conditions, namely when such prudence greatly enhances the success of populations that are not too prone to invasions by profligate individuals. Cultural evolution in human societies can also lead to the adoption of prudent practices under similar conditions. These are more likely to be realized in stable environments in which the human populations tend to grow close to the carrying capacity, when the human groups are closed, and when the technology is stagnant. These conditions probably prevailed in the hunter—gatherer societies of the tropics and subtropics, and led to the adoption of a number of socially imposed restraints on the use of plant and animal resources. Such practices were rationalized in the form of Nature-worship. The Indian caste society became so organized as to fulfill these conditions, and gave rise to two religions, Buddhism and Jainism, which emphasize compassion towards all forms of life. The pastoral nomads of the middle east, on the other hand, lived in an environment which militated against prudence, and these societies gave rise to religions like Christianity, which declared war on nature. As the ruling elite and state have grown in power, they have tried to wrest control of natural resources from the local communities. This has sometimes resulted in conservation and prudent use under guidance from the state, but has often led to conflicts with local populations to the detriment of prudent behaviour. Modern technological progress has also often removed the need for conservation, as when availability of coal permitted the deforestation of England. While modern scientific understanding has led to a better appreciation of the need for prudence, the prevailing social and economic conditions often militate against any implementation of the understanding, as is seen from the history of whaling. However, the imperative for survival of the poor from the Third-World countries may finally bring about conditions in which ecological prudence may once again come to dominate human cultures as it might once have done with stable societies of hunter—gatherers.
Resumo:
Indian society is an agglomeration of several thousand endogamous groups or castes each with a restricted geographical range and a hereditarily determine mode of subsistence. These reproductively isolated castes may be compared to biological species, and the society thought of as a biological community with each caste having its specific ecological niche. In this paper we examine the ecological-niche relationships of castes which are directly dependent on natural resources. Evidence is presented to show that castes living together in the same region had so organized their pattern of resource use as to avoid excessive intercaste competition for limiting resources. Furthermore, territorial division of the total range of the caste regulated intra-caste competition. Hence, a particular plant or animal resource in a given locality was used almost exclusively by a given lineage within a caste generation after generation. This favoured the cultural evolution of traditions ensuring sustainable use of natural resources. This must have contributed significantly to the stability of Indian caste society over several thousand years. The collapse of the base of natural resources and increasing monetarization of the economy has, however, destroyed the earlier complementarity between the different castes and led to increasing conflicts between them in recent years.
Resumo:
We address the issue of complexity for vector quantization (VQ) of wide-band speech LSF (line spectrum frequency) parameters. The recently proposed switched split VQ (SSVQ) method provides better rate-distortion (R/D) performance than the traditional split VQ (SVQ) method, even at the requirement of lower computational complexity. but at the expense of much higher memory. We develop the two stage SVQ (TsSVQ) method, by which we gain both the memory and computational advantages and still retain good R/D performance. The proposed TsSVQ method uses a full dimensional quantizer in its first stage for exploiting all the higher dimensional coding advantages and then, uses an SVQ method for quantizing the residual vector in the second stage so as to reduce the complexity. We also develop a transform domain residual coding method in this two stage architecture such that it further reduces the computational complexity. To design an effective residual codebook in the second stage, variance normalization of Voronoi regions is carried out which leads to the design of two new methods, referred to as normalized two stage SVQ (NTsSVQ) and normalized two stage transform domain SVQ (NTsTrSVQ). These two new methods have complimentary strengths and hence, they are combined in a switched VQ mode which leads to the further improvement in R/D performance, but retaining the low complexity requirement. We evaluate the performances of new methods for wide-band speech LSF parameter quantization and show their advantages over established SVQ and SSVQ methods.
Resumo:
The research in software science has so far been concentrated on three measures of program complexity: (a) software effort; (b) cyclomatic complexity; and (c) program knots. In this paper we propose a measure of the logical complexity of programs in terms of the variable dependency of sequence of computations, inductive effort in writing loops and complexity of data structures. The proposed complexity mensure is described with the aid of a graph which exhibits diagrammatically the dependence of a computation at a node upon the computation of other (earlier) nodes. Complexity measures of several example programs have been computed and the related issues have been discussed. The paper also describes the role played by data structures in deciding the program complexity.
Resumo:
This paper review the some of the recent developments in Complexity theory as applied to telephone-switching. Some of these techniques are suitable for practical implementation in India.
Resumo:
We computed Higuchi's fractal dimension (FD) of resting, eyes closed EEG recorded from 30 scalp locations in 18 male neuroleptic-naive, recent-onset schizophrenia (NRS) subjects and 15 male healthy control (HC) subjects, who were group-matched for age. Schizophrenia patients showed a diffuse reduction of FD except in the bilateral temporal and occipital regions, with the reduction being most prominent bifrontally. The positive symptom (PS) schizophrenia subjects showed FD values similar to or even higher than HC in the bilateral temporo-occipital regions, along with a co-existent bifrontal FD reduction as noted in the overall sample of NRS. In contrast, this increase in FD values in the bilateral temporo-occipital region was absent in the negative symptom (NS) subgroup. The regional differences in complexity suggested by these findings may reflect the aberrant brain dynamics underlying the pathophysiology of schizophrenia and its symptom dimensions. Higuchi's method of measuring FD directly in the time domain provides an alternative for the more computationally intensive nonlinear methods of estimating EEG complexity.
Resumo:
We develop a two stage split vector quantization method with optimum bit allocation, for achieving minimum computational complexity. This also results in much lower memory requirement than the recently proposed switched split vector quantization method. To improve the rate-distortion performance further, a region specific normalization is introduced, which results in 1 bit/vector improvement over the typical two stage split vector quantizer, for wide-band LSF quantization.
Resumo:
We present two discriminative language modelling techniques for Lempel-Ziv-Welch (LZW) based LID system. The previous approach to LID using LZW algorithm was to directly use the LZW pattern tables forlanguage modelling. But, since the patterns in a language pattern table are shared by other language pattern tables, confusability prevailed in the LID task. For overcoming this, we present two pruning techniques (i) Language Specific (LS-LZW)-in which patterns common to more than one pattern table are removed. (ii) Length-Frequency product based (LF-LZW)-in which patterns having their length-frequency product below a threshold are removed. These approaches reduce the classification score (Compression Ratio [LZW-CR] or the weighted discriminant score [LZW-WDS]) for non native languages and increases the LID performance considerably. Also the memory and computational requirements of these techniques are much less compared to basic LZW techniques.
Resumo:
This paper deals with low maximum-likelihood (ML)-decoding complexity, full-rate and full-diversity space-time block codes (STBCs), which also offer large coding gain, for the 2 transmit antenna, 2 receive antenna (2 x 2) and the 4 transmit antenna, 2 receive antenna (4 x 2) MIMO systems. Presently, the best known STBC for the 2 2 system is the Golden code and that for the 4 x 2 system is the DjABBA code. Following the approach by Biglieri, Hong, and Viterbo, a new STBC is presented in this paper for the 2 x 2 system. This code matches the Golden code in performance and ML-decoding complexity for square QAM constellations while it has lower ML-decoding complexity with the same performance for non-rectangular QAM constellations. This code is also shown to be information-lossless and diversity-multiplexing gain (DMG) tradeoff optimal. This design procedure is then extended to the 4 x 2 system and a code, which outperforms the DjABBA code for QAM constellations with lower ML-decoding complexity, is presented. So far, the Golden code has been reported to have an ML-decoding complexity of the order of for square QAM of size. In this paper, a scheme that reduces its ML-decoding complexity to M-2 root M is presented.
Resumo:
In this paper, we present a low-complexity algorithm for detection in high-rate, non-orthogonal space-time block coded (STBC) large-multiple-input multiple-output (MIMO) systems that achieve high spectral efficiencies of the order of tens of bps/Hz. We also present a training-based iterative detection/channel estimation scheme for such large STBC MIMO systems. Our simulation results show that excellent bit error rate and nearness-to-capacity performance are achieved by the proposed multistage likelihood ascent search (M-LAS) detector in conjunction with the proposed iterative detection/channel estimation scheme at low complexities. The fact that we could show such good results for large STBCs like 16 X 16 and 32 X 32 STBCs from Cyclic Division Algebras (CDA) operating at spectral efficiencies in excess of 20 bps/Hz (even after accounting for the overheads meant for pilot based training for channel estimation and turbo coding) establishes the effectiveness of the proposed detector and channel estimator. We decode perfect codes of large dimensions using the proposed detector. With the feasibility of such a low-complexity detection/channel estimation scheme, large-MIMO systems with tens of antennas operating at several tens of bps/Hz spectral efficiencies can become practical, enabling interesting high data rate wireless applications.
Resumo:
In this paper, we present a low-complexity, near maximum-likelihood (ML) performance achieving detector for large MIMO systems having tens of transmit and receive antennas. Such large MIMO systems are of interest because of the high spectral efficiencies possible in such systems. The proposed detection algorithm, termed as multistage likelihood-ascent search (M-LAS) algorithm, is rooted in Hopfield neural networks, and is shown to possess excellent performance as well as complexity attributes. In terms of performance, in a 64 x 64 V-BLAST system with 4-QAM, the proposed algorithm achieves an uncoded BER of 10(-3) at an SNR of just about 1 dB away from AWGN-only SISO performance given by Q(root SNR). In terms of coded BER, with a rate-3/4 turbo code at a spectral efficiency of 96 bps/Hz the algorithm performs close to within about 4.5 dB from theoretical capacity, which is remarkable in terms of both high spectral efficiency as well as nearness to theoretical capacity. Our simulation results show that the above performance is achieved with a complexity of just O(NtNt) per symbol, where N-t and N-tau denote the number of transmit and receive antennas.