262 resultados para EXCHANGE MOLECULAR-DYNAMICS

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

CucurbitacinE (CurE) has been known to bind covalently to F-actin and inhibit depolymerization. However, the mode of binding of CurE to F-actin and the consequent changes in the F-actin dynamics have not been studied. Through quantum mechanical/molecular mechanical (QM/MM) and density function theory (DFT) simulations after the molecular dynamics (MD) simulations of the docked complex of F-actin and CurE, a detailed transition state (TS) model for the Michael reaction is proposed. The TS model shows nucleophilic attack of the sulphur of Cys257 at the beta-carbon of Michael Acceptor of CurE producing an enol intermediate that forms a covalent bond with CurE. The MD results show a clear difference between the structure of the F-actin in free form and F-actin complexed with CurE. CurE affects the conformation of the nucleotide binding pocket increasing the binding affinity between F-actin and ADP, which in turn could affect the nucleotide exchange. CurE binding also limits the correlated displacement of the relatively flexible domain 1 of F-actin causing the protein to retain a flat structure and to transform into a stable ``tense'' state. This structural transition could inhibit depolymerization of F-actin. In conclusion, CurE allosterically modulates ADP and stabilizes F-actin structure, thereby affecting nucleotide exchange and depolymerization of F-actin. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Banana lectin (Banlec) is a homodimeric non-glycosylated protein. It exhibits the b-prism I structure. High-temperature molecular dynamics simulations have been utilized to monitor and understand early stages of thermally induced unfolding of Banlec. The present study elucidates the behavior of the dimeric protein at four different temperatures and compares the structural and conformational changes to that of the minimized crystal structure. The process of unfolding was monitored by following the radius of gyration, the rms deviation of each residue, change in relative solvent accessibility and the pattern of inter- and intra-subunit interactions. The overall study demonstrates that the Banlec dimer is a highly stable structure, and the stability is mostly contributed by interfacial interactions. It maintains its overall conformation during high-temperature (400–500 K) simulations, with only the unstructured loop regions acquiring greater momentum under such condition. Nevertheless, at still higher temperatures (600 K) the tertiary structure is gradually lost which later extends to loss of secondary structural elements. The pattern of hydrogen bonding within the subunit and at the interface across different stages has been analyzed and has provided rationale for its intrinsic high stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Internal motions in a A2BX4 compound (tetramethylammonium tetrabromo cadmate) have been investigated using proton spin—lattice relaxation time (T1) and second moment (M2) measurements in the temperature range 77 to 400 K. T1 measurements at three Larmor frequencies (10, 20 and 30 MHz) show isotropic tumbling of the tetramethylammonium group, random reorientation of methyl groups and spin—rotation interaction, and the corresponding parameters have been computed. The cw spectrum is narrow throughout the temperature range and shows side bands at the lowest temperature. This observation, along with the free-induction-decay behavior at these temperatures, is interpreted as the onset of a coherent motion, e.g. methyl group quantum tunnelling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular dynamics (MD) simulations are reported for an anchored bilayer formed by the intercalation of cetyl trimethyl ammonium (CTA) and CH3(CH2)15N+(CH3) ions in a layered solid, CdPS3. The intercalated CTA ions are organized with the cationic headgroups tethered to the inorganic sheet and the hydrocarbon tails arranged as bilayers. Simulations were performed at three temperatures, 65, 180, and 298 K, using an isothermal−isobaric ensemble that was subsequently switched once macroscopic parameters had converged to a canonical isothermal−isochoric ensemble. The simulations are able to reproduce the experimental features of this system, including the formation of the bilayer and layer-to-layer separation distance. An analysis of the conformation of the chains showed that at all three temperatures a fraction of the alkyl chains retained a planar all-trans conformation, and that gauche bonds occurred as part of a “kink” (gauche+−trans−gauche−) sequence and not as isolated gauche bonds. Trans−gauche isomerization rates for the alkyl chains in the anchored bilayer are slower than those in lipid bilayers at the same temperature and show a progressive increase as the torsion numbers approach the tail. A two-dimensional periodic Voronoi tessellation analysis was performed to obtain the single-molecular area of an alkyl chain in the bilayer. The single-molecular area relaxation times are an order of magnitude longer than the trans−gauche isomerization times. The results indicate that the trans−gauche isomerization is associated with the creation and annihilation of a kink defect sequence. The results of the present MD simulation explain the apparent conflicting estimates of the gauche disorder in this system as obtained from infrared and 13C nuclear magnetic resonance measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proton magnetic resonance and spin-lattice relaxation studies have been carried out on (NH4)2CdI4 as a function of temperature (77–400 K) and Larmor frequency (10, 20 and 30 MHz). The T1 data indicate isotropic tumbling of ammonium ions at equivalent sites till 160 K. There is an indication of a phase transition at 265 K, the activation energy for molecular reorientation increases from 2.8 kcal/mole to 4.6 kcal/mole. The relaxation results and the linewidth data support the presence of two inequivalent sites at low temperatures, one having an environment corresponding to near-rigid-lattice limit and the other undergoing fast reorientations. The behaviour of the free induction decay with temperature below 120 K suggests a coherent motion for the faster species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

second moment measurements are carried out on [(CH,),N], CdI, in the temperature range 77 to 400 K. The results are interpreted based on a molecular dynamical model of randomly reorienting methyl groups and isotropically tumbling tetramethyl ammonium group. The relaxation data show contributions from spin-rotation interaction at high temperatures and presence of inequivalent methyl groups. The correlation times and associated activation energies, connected with this model, are calculated from the data. The structure in the absorption line and in the free-induction decay signal at 77 K indicates the possibility of tunnelling motion of the methyl groups. Im Temperaturbereich 77 bis 400 K werden an [(CH,),N],CdI, Protonen-Spin-Gitter-Relaxationsexperimente (bei Larmorfrequenzen von 10,20 und 30 MHz) und Messungen des zweiten Moments durchgefiihrt. Die Ergebnisse werden an Hand eines molekularen dynamischen Modells sich statistisch umorientierender Methylgruppen und isotrop taumelnder Tetramethyl-Ammoniumgruppen interpretiert. Die Relaxationswerte zeigen Beitriige von Spin-Rotations-Wechselwirkung bei hohen Temperaturen und die Anwesenheit von inaquivalenten Methylgruppen. Die Korrelationszeiten und verknupften Aktivierungsenergien, die mit diesem Model1 verbunden sind, werden am den Werten berechnet. Die Struktur in der Absorptionslinie und im Abklingsignal der freien Induktion bei 77 K zeigt die Moglichkeit einer Tunnelbewegung der Methylgruppen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental evidence suggests that high strain rates, stresses, strains and temperatures are experienced near sliding interfaces. The associated microstructural changes are due to several dynamic an interacting phenomena. 3D non-equilibrium molecular dynamics (MD) simulations of sliding were conducted with the aim of understanding the dynamic processes taking place in crystalline tribopairs, with a focus on plastic deformation and microstructural evolution. Embedded atom potentials were employed for simulating sliding of an Fe-Cu tribopair. Sliding velocity, crystal orientation and presence of lattice defects were some of the variables in these simulations. Extensive plastic deformation involving dislocation and twin activity, dynamic recrystallization, amorphization and/or nanocrystallization, mechanical mixing and material transfer were observed. Mechanical mixing in the vicinity of the sliding interface was observed even in the Fe-Cu system, which would cluster under equilibrium conditions, hinting at the ballistic nature of the process. Flow localization was observed at high velocities implying the possible role of adiabatic heating. The presence of preexisting defects (such as dislocations and interfaces) played a pivotal role in determining friction and microstructural evolution. The study also shed light on the relationship between adhesion and plastic deformation, and friction. Comparisons with experiments suggest that such simulations can indeed provide valuable insights that are difficult to obtain from experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure of PbO---PbF2 glasses has been studied using molecular dynamics (MD). The existence of [OPb4] structural units is observed over the entire glass-forming range, in conformity with a model proposed earlier based on various structural investigations of this system. Various other features of the structural model are also supported by the MD calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neutron Scattering and Molecular Dynamics Evidence for Levitation Effect in Nanopores ... Neutron scattering measurements and molecular dynamics simulations have been carried out on the three isomers of pentane (neopentane (neo), isopentane (iso), and n-pentane (n-)) adsorbed in zeolite NaY. ... In order to understand this surprising dependence, the dimensionless levitation parameter, γ, for atomic systems may be modified to suit molecular systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aggregation property of multiheaded surfactants has been investigated by constant pressure molecular dynamics (MD) simulation in aqueous medium. The model multiheaded surfactants contain more than one headgroup (x = 2, 3, and 4) for a single tail group. This increases the hydrophilic charge progressively over the hydrophobic tail which has dramatic consequences in the aggregation behavior. In particular, we have looked at the change in the aggregation property such as critical micellar concentration (cmc), aggregation number, and size of the micelles for the multiheaded surfactants in water. We find with increasing number of headgroups of the Multiheaded surfactants that the cmc values increase and the aggregation numbers as well as the size of the micelles decrease. These trends are in agreement with the experimental findings as reported earlier with x = 1, 2, and 3. We also predict the aggregation properties of multiheaded surfactant With four headgroups (x = 4) for which no experimental studies exist yet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using excited-state ab initio molecular dynamics simulations employing the complete-active-space self-consistent-field approach, we study the mechanism of photodissociation in terms of time evolution of structure, kinetic energy, charges and potential energy for the first excited state of hydrogen halides and methyl halides. Although the hydrogen halides and methyl halides are similar in the photodissociation mechanism, their dynamics are slightly different. The presence of the methyl group causes delay in photodissociation as compared to hydrogen halides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular dynamics simulations have been carried out on all the jacalin-carbohydrate complexes of known structure, models of unliganded molecules derived from the complexes and also models of relevant complexes where X-ray structures are not available. Results of the simulations and the available crystal structures involving jacalin permit delineation of the relatively rigid and flexible regions of the molecule and the dynamical variability of the hydrogen bonds involved in stabilizing the structure. Local flexibility appears to be related to solvent accessibility. Hydrogen bonds involving side chains and water bridges involving buried water molecules appear to be important in the stabilization of loop structures. The lectin-carbohydrate interactions observed in crystal structures, the average parameters pertaining to them derived from simulations, energetic contribution of the stacking residue estimated from quantum mechanical calculations, and the scatter of the locations of carbohydrate and carbohydrate-binding residues are consistent with the known thermodynamic parameters of jacalin-carbohydrate interactions. The simulations, along with X-ray results, provide a fuller picture of carbohydrate binding by jacalin than provided by crystallographic analysis alone. The simulations confirm that in the unliganded structures water molecules tend to occupy the positions occupied by carbohydrate oxygens in the lectin-carbohydrate complexes. Population distributions in simulations of the free lectin, the ligands, and the complexes indicate a combination of conformational selection and induced fit. Proteins 2009; 77:760-777.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular dynamics simulations are reported on the structure and dynamics of n-decane and 3-methylpentane in zeolite NaY. We have calculated several properties such as the center of mass-center of mass rdf, the end-end distance distribution, bond angle distribution and dihedral angle distribution. We have also analysed trajectory to obtain diffusivity and velocity autocorrelation function (VACF). Surprisingly, the diffusivity of 3-methylpentane which is having larger cross-section perpendicular to the long molecular axis is higher than n-decane at 300 K. Activation energies have been obtained from simulations performed at 200 K, 300 K, 350 K, 400 K and 450 K in the NVE ensemble. These results can be understood in terms of the previously known levitation effect. Arrhenious plot has higher value of slope for n-decane (5 center dot 9 kJ/mol) than 3-methylpentane (3 center dot 7 kJ/mol) in agreement with the prediction of levitation effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A wealth of information available from x-ray crystallographic structures of enzyme-ligand complexes makes it possible to study interactions at the molecular level. However, further investigation is needed when i) the binding of the natural substrate must be characterized, because ligands in the stable enzyme-ligand complexes are generally inhibitors or the analogs of substrate and transition state, and when ii) ligand binding is in part poorly characterized. We have investigated these aspects i? the binding of substrate uridyl 3',5'-adenosine (UpA) to ribonuclease A (RNase A). Based on the systematically docked RNase A-UpA complex resulting from our previous study, we have undertaken a molecular dynamics simulation of the complex with solvent molecules. The molecular dynamics trajectories of this complex are analyzed to provide structural explanations for varied experimental observations on the ligand binding at the B2 subsite of ribonuclease A. The present study suggests that B2 subsite stabilization can be effected by different active site groups, depending on the substrate conformation. Thus when adenosine ribose pucker is O4'-endo, Gln69 and Glu111 form hydrogen-bonding contacts with adenine base, and when it is C2'-endo, Asn71 is the only amino acid residue in direct contact with this base. The latter observation is in support of previous mutagenesis and kinetics studies. Possible roles for the solvent molecules in the binding subsites are described. Furthermore, the substrate conformation is also examined along the simulation pathway to see if any conformer has the properties of a transition state. This study has also helped us to recognize that small but concerted changes in the conformation of the substrate can result in substrate geometry favorable for 2',3' cyclization. The identified geometry is suitable for intraligand proton transfer between 2'-hydroxyl and phosphate oxygen atom. The possibility of intraligand proton transfer as suggested previously and the mode of transfer before the formation of cyclic intermediate during transphosphorylation are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Valinomycin is a highly flexible cyclic dodecadepsipeptide that transports ions across membranes. Such a flexibility in the conformation is required for its biological function since it has to encounter a variety of environments and liganding state. Exploration of conformational space of this molecule is therefore important and is one of the objectives of the present study that has been carried out by means of high temperature Molecular Dynamics. Further, the stability of the known bracelet-like structure of the uncomplexed valinomycin and the inherent flexibility around this structure has been investigated. The uncomplexed form of valinomycin has been simulated at 75–100 K for 1 ns in order to elucidate the average conformational properties. An alanine-analog of valinomycin has been simulated under identical conditions in order to evaluate the effect of sidechain on the conformational properties, The studies confirm the effect of sidechain on conformational equilibrium.