200 resultados para ESR dating
em Indian Institute of Science - Bangalore - Índia
Resumo:
The region around Waclakkancheri, in the province of Kerala, India, which lies in the vicinity of Palghat-Cauvery ;hear zone (within the Precambrian crystalline terrain), has been a site of microseismic activity since 1989. Earlier studies had identified a prominent WNW-ESE structure overprinting on the E-W trending lineaments associated with Palghat-Cauvery shear zone. We have mapped this structure, located in a chamockite quarry near Desamangalam, Waclakkancheri, which we identify as a ca. 30 km-long south dipping reverse fault. This article presents the characteristics of this fault zone exposed on the exhumed crystalline basement and discusses its significance in understanding the earthquake potential of the region. This brittle deformation zone consists of fracture sets with small-scale displacement and slip planes with embedded fault gouges. The macroscopic as well as the microscopic studies of this fault zone indicate that it evolved through different episodes of faulting in the presence of fluids. The distinct zones within consolidated gouge and the cross cutting relationship of fractures indicate episodic fault activity. At least four faulting episodes can be recognized based on the sequential development of different structural elements in the fault rocks. The repeated ruptures are evident along this shear zone and the cyclic behavior of this fault consists of co-seismic ruptures alternating with inter-seismic periods, which is characterized by the sealed fractures and consolidated gouge. The fault zone shows a minimum accumulated dip/oblique slip of 2.1 m in the reverse direction with a possible characteristic slip of 52 cm (for each event). The ESR dating of fault gouge indicates that the deformation zone records a major event in the Middle Quaternary. The empirical relationships between fault length and slip show that this fault may generate events M >= 6. The above factors suggest that this fault may be characterized as potentially active. Our study offers some new pointers that can be used in other slow deforming cratonic hinterlands in exploring the discrete active faults.
Resumo:
We describe an X-band ESR cavity for angular variation studies on single crystals at room temperature. The cavity was found to have a high Q over wide rotation angles. Review of Scientific Instruments is copyrighted by The American Institute of Physics.
Resumo:
Single crystal [(111) and (100) planes], and powder ESR of Mn2+ (substituting for Ca2+) in Ca2Ba(C2H5COO)6 in the temperature range 220°C to -160°C shows (i) a doubling of both the physically and chemically inequivalent sites, and a change in the magnitude (150 G at -6°C to 170 G at -8°C) as well as the orientation of the D tensor across the -6°C transition and (ii) an inflection point in the D vs T plot across the -75°C transition. The oxygen octahedra around the Ca2+ sites are inferred to undergo alternate rotations, showing the participation of the carboxyl oxygens in the -6°C transition. A relation of the type D=D0(1+αT+βT2) seems to fit the D variation satisfactorily.
Resumo:
Enthalpy changes of the crystal-plastic and plastic-liquid transitions are related to the temperature range of stability of the plastic phase. Thermodynamics of the plastic state of binary mixtures have been examined. Infrared correlation times, τc, and activation energies have been measured for a few molecules in the plastic state. Molecular tumbling times, τt, have also been measured employing ESR spectra of a spin-probe. Plots of log τc(τt) 1/T are continuous through the plastic-liquid transition. Activation energies for molecular motion seem to vary in the same direction as the ΔH of the plastic-crystal transition. Infrared correlation times of solute molecules in binary solutions in the plastic and the liquid states show interesting variations with solute concentration.
Resumo:
ESR spectra of three inorganic glasses doped with Mn2+ and Fe3+ have been studied through their glass transition temperatures (Tg). Spectral features in each case have been discussed with reference to site symmetries. The intensity of the ESR signal has been bound to decrease in the region of Tg. An attempt has been made to explain this interesting feature on the basis of a two-state model.
Resumo:
Ferroelectric phase transition in ammonium sulfate has been studied by ESR of CrO43- radical substituting for SO42- ion in (NH4)2SO4. In addition to discontinuous changes at Tc, certain continuous changes are observed in ESR parameters of this probe below Tc, which reflect the role of the sulfate ion in the phase transition. A microscopic mechanism of the phase transition is proposed and discussed in terms of the change of orientation of the sulfate tetrahedron through a finite angle. The degree of the change of orientation below Tc is thought to be the possible order parameter of the phase transition.
Resumo:
The variation of zero-field splitting and linewidth of Cr3+ ion in KCr and KAI alums with hydrostatic pressure and with temperature is investigated. A model for the apparent phase transition is proposed on the basis of the reorientational motion of the SO2�4 groups.
Resumo:
ESR and optical studies of phosphomolybdate and phosphotungstate glasses are discussed. Both the ESR and optical results indicate that molybdenum or tungsten ions are present in distorted octahedral environments in these glasses. In addition, ESR spectra of Mo5+ and W5+ ions show that the d electrons are localized on molybdenum and tungsten sites respectively. The variation of gperpendicular and gshort parallel values has been examined using appropriate structural models of these glasses.
Resumo:
Using electron spin resonance spectroscopy (ESR), we measure the rotational mobility of probe molecules highly diluted in deeply supercooled bulk water and negligibly constrained by the possible ice fraction. The mobility increases above the putative glass transition temperature of water, T-g = 136 K, and smoothly connects to the thermodynamically stable region by traversing the so called "no man's land" (the range 150-235 K), where it is believed that the homogeneous nucleation of ice suppresses the liquid water. Two coexisting fractions of the probe molecules are evidenced. The 2 fractions exhibit different mobility and fragility; the slower one is thermally activated (low fragility) and is larger at low temperatures below a fragile-to-strong dynamic cross-over at approximate to 225 K. The reorientation of the probe molecules decouples from the viscosity below approximate to 225 K. The translational diffusion of water exhibits a corresponding decoupling at the same temperature [Chen S-H, et al. (2006) The violation of the Stokes-Einstein relation in supercooled water. Proc Natl Acad Sci USA 103:12974-12978]. The present findings are consistent with key issues concerning both the statics and the dynamics of supercooled water, namely the large structural fluctuations [Poole PH, Sciortino F, Essmann U, Stanley HE (1992) Phase behavior of metastable water. Nature 360: 324-328] and the fragile-to-strong dynamic cross-over at approximate to 228 K [Ito K, Moynihan CT, Angell CA (1999) Thermodynamic determination of fragility in liquids and a fragile-tostrong liquid transition in water. Nature 398: 492-494].
Resumo:
Detailed ESR investigations of Mn2+ substituting for Ca2+ in Ca2Sr(C2H5COO)6 (DSP), Ca2Pb(C2H5COO)6 (DLP) and Ca2Ba(C2H5COO)6 (DBP), in single crystals and powders, over the temperature range from 200°C to -180°C have been carried out to study the successive phase transitions in these compounds. (DSP: [Tetragonal] ← 8.5°C → [tetragonal, ferroelectric] [tetragonal] ← -169°C → [monoclinic, ferroelectric]; DLP : [tetragonal] ← 60°C → [tetragonal, ferroelectric] ← -71.5°C → [monoclinic, ferroelectric]; [Cubic] ← -6°C → [orthorhombic] ← -75°C → [?]). Spectra have been analysed in terms of axial spin Hamiltonians and the temperature dependences of the parameters studied. In DSP and DLP across the I ↔ II transition, new physically and chemically inequivalent sites appear indicating the disappearance of the diad axes on which the propionate groups are located, bringing out the connection between the motional states of the propionate groups and the occurence of ferroelectricity. The II ↔ III transition also causes chemically inequivalent sites to develop, indicating that the transitions may not be isomorphous as believed previously. In DBP, the -6°C transition leads to (i) a doubling of both physically and chemically inequivalent sites (ii) a small (150 G at -6°C to 170 G at -8°C), but abrupt change in the magnitude of the zero-field splitting tensor D, and (iii) displacements of the orientations of the D tensors. Results are interpreted in terms of alternate rotations of the oxygen octahedra, showing participation of the carboxyl oxygens in the transition. No drastic changes in the parameters occur across the -75°C transition consistent with its second order nature. Similarities and dissimilarities of the ESR spectra of the three compounds in relation to the phase transitions, are discussed.
Resumo:
The addition of guanosine 5-monophosphate (5′-GMP) to an aqueous solution of Mn2+ ions results in a decrease in ESR signal intensity and an increase in line-width of Mn2+ ions. This can be interpreted in terms of stepwise formation of outersphere and inner-sphere complexes as When Mg2+ is added to a mixture of Mn2+ and 5′-GMP, ESR signal intensity increases, presumably due to the replacement of Mn2+ by Mg2+ in the complex. From the variation of ESR signal intensity as a function of concentration of Mg2+, the product K1K2 for the magnesium complex i s calculated as 125 M−1. This difference in stability constants may indicate that both phosphate group and guanine base are involved in the formation of Mn2+-5′-GMP complex.
Resumo:
The variation of zero-field splitting and linewidth of Cr3+ ion in KCr and KAI alums with hydrostatic pressure and with temperature is investigated. A model for the apparent phase transition is proposed on the basis of the reorientational motion of the SO2-4 groups.
Resumo:
ESR investigations are reported in single crystals of copper diethyldithiophosphate, magnetically diluted with the corresponding diamagnetic nickel complex. The spectrum at normal gain shows hyperfine components from 63Cu, 65Cu, and 31P nuclei. At much higher gain, hyperfine interaction from 33S nuclei in the ligand is detected. The spin Hamiltonian parameters relating to copper show tetragonal symmetry. The measured parameters are g = 2.085, g =2.025, A63Cu = 149.6 × 10−4 cm−1, A65Cu = 160.8 × 10−4 cm−1, BCu = 32.5 × 10−4 cm−1 and QCu 5.5 × 10−4cm−1. The 31P interaction is isotropic with a coupling constant AP = 9.6 × 10−4 cm−1. Angular variation of the 33S lines shows two different hyperfine tensors indicating the presence of two chemically inequivalent Cu S bonds. The experimentally determined hyperfine constants are A =34.9×10−4 cm−1, B =26.1×10−4 cm−1, A =60.4×10−4 cm−1, B =55.5×10−4 cm−1. The hyperfine parameters show that the hybridization of the ligand orbitals is very sensitive to the symmetry around the ligand. The g values and Cu hyperfine parameters are not much affected by the distortions occurring in the ligand. The energies of the d-d transitions are determined by optical absorption measurements on Cu diethyldithiophosphate in solution. Using the spin Hamiltonian parameters together with optical absorption results, the MO parameters for the complex are calculated. It is found that in addition to the bond, the bonds are also strongly covalent. ©1973 The American Institute of Physics
Resumo:
A study of the hyperfine interaction in the ESR of coupled Cu---Cu pairs in single crystals of copper diethyldithiocarbamate as a function of temperature has shown distinct differences in the hyperfine structure in the two fine-structure transitions at 20 K; the spectrum does not have the usual binomial hyperfine pattern for the fine-structure transition of the low field in contrast to that of the high field. The details of the structure of both fine-structure transitions in the 20-K spectrum can be explained by recognizing the fact that the mixing of the nuclear spin states caused by the anisotropic hyperfine interaction affects the electron spin states |+1 and |−1 differently. The anomalous hyperfine structure is found to become symmetric at 77 and 300 K. It is proposed that the reason for this lies in the dynamics of spin-lattice interaction, which limits the lifetime of the spin states in each of the electronic levels |−1 , |0 , and |+1 . The estimate of spin-lattice relaxation time in the temperature range where the changes are observed agrees with those indicated by other studies. The model proposed here for the hyperfine interaction of pairs in the electronic triplet state is of general validity.