254 resultados para ERROR MATRIX

em Indian Institute of Science - Bangalore - Índia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Land cover (LC) and land use (LU) dynamics induced by human and natural processes play a major role in global as well as regional patterns of landscapes influencing biodiversity, hydrology, ecology and climate. Changes in LC features resulting in forest fragmentations have posed direct threats to biodiversity, endangering the sustainability of ecological goods and services. Habitat fragmentation is of added concern as the residual spatial patterns mitigate or exacerbate edge effects. LU dynamics are obtained by classifying temporal remotely sensed satellite imagery of different spatial and spectral resolutions. This paper reviews five different image classification algorithms using spatio-temporal data of a temperate watershed in Himachal Pradesh, India. Gaussian Maximum Likelihood classifier was found to be apt for analysing spatial pattern at regional scale based on accuracy assessment through error matrix and ROC (receiver operating characteristic) curves. The LU information thus derived was then used to assess spatial changes from temporal data using principal component analysis and correspondence analysis based image differencing. The forest area dynamics was further studied by analysing the different types of fragmentation through forest fragmentation models. The computed forest fragmentation and landscape metrics show a decline of interior intact forests with a substantial increase in patch forest during 1972-2007.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A symmetrizer of the matrix A is a symmetric solution X that satisfies the matrix equation XA=AprimeX. An exact matrix symmetrizer is computed by obtaining a general algorithm and superimposing a modified multiple modulus residue arithmetic on this algorithm. A procedure based on computing a symmetrizer to obtain a symmetric matrix, called here an equivalent symmetric matrix, whose eigenvalues are the same as those of a given real nonsymmetric matrix is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A symmetric solution X satisfying the matrix equation XA = AtX is called a symmetrizer of the matrix A. A general algorithm to compute a matrix symmetrizer is obtained. A new multiple-modulus residue arithmetic called floating-point modular arithmetic is described and implemented on the algorithm to compute an error-free matrix symmetrizer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An algorithm that uses integer arithmetic is suggested. It transforms anm ×n matrix to a diagonal form (of the structure of Smith Normal Form). Then it computes a reflexive generalized inverse of the matrix exactly and hence solves a system of linear equations error-free.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Presented here, in a vector formulation, is an O(mn2) direct concise algorithm that prunes/identifies the linearly dependent (ld) rows of an arbitrary m X n matrix A and computes its reflexive type minimum norm inverse A(mr)-, which will be the true inverse A-1 if A is nonsingular and the Moore-Penrose inverse A+ if A is full row-rank. The algorithm, without any additional computation, produces the projection operator P = (I - A(mr)- A) that provides a means to compute any of the solutions of the consistent linear equation Ax = b since the general solution may be expressed as x = A(mr)+b + Pz, where z is an arbitrary vector. The rank r of A will also be produced in the process. Some of the salient features of this algorithm are that (i) the algorithm is concise, (ii) the minimum norm least squares solution for consistent/inconsistent equations is readily computable when A is full row-rank (else, a minimum norm solution for consistent equations is obtainable), (iii) the algorithm identifies ld rows, if any, and reduces concerned computation and improves accuracy of the result, (iv) error-bounds for the inverse as well as the solution x for Ax = b are readily computable, (v) error-free computation of the inverse, solution vector, rank, and projection operator and its inherent parallel implementation are straightforward, (vi) it is suitable for vector (pipeline) machines, and (vii) the inverse produced by the algorithm can be used to solve under-/overdetermined linear systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 4ÃÂ4 discrete cosine transform is one of the most important building blocks for the emerging video coding standard, viz. H.264. The conventional implementation does some approximation to the transform matrix elements to facilitate integer arithmetic, for which hardware is suitably prepared. Though the transform coding does not involve any multiplications, quantization process requires sixteen 16-bit multiplications. The algorithm used here eliminates the process of approximation in transform coding and multiplication in the quantization process, by usage of algebraic integer coding. We propose an area-efficient implementation of the transform and quantization blocks based on the algebraic integer coding. The designs were synthesized with 90 nm TSMC CMOS technology and were also implemented on a Xilinx FPGA. The gate counts and throughput achievable in this case are 7000 and 125 Msamples/sec.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acoustic modeling using mixtures of multivariate Gaussians is the prevalent approach for many speech processing problems. Computing likelihoods against a large set of Gaussians is required as a part of many speech processing systems and it is the computationally dominant phase for LVCSR systems. We express the likelihood computation as a multiplication of matrices representing augmented feature vectors and Gaussian parameters. The computational gain of this approach over traditional methods is by exploiting the structure of these matrices and efficient implementation of their multiplication.In particular, we explore direct low-rank approximation of the Gaussian parameter matrix and indirect derivation of low-rank factors of the Gaussian parameter matrix by optimum approximation of the likelihood matrix. We show that both the methods lead to similar speedups but the latter leads to far lesser impact on the recognition accuracy. Experiments on a 1138 word vocabulary RM1 task using Sphinx 3.7 system show that, for a typical case the matrix multiplication approach leads to overall speedup of 46%. Both the low-rank approximation methods increase the speedup to around 60%, with the former method increasing the word error rate (WER) from 3.2% to 6.6%, while the latter increases the WER from 3.2% to 3.5%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel Projection Error Propagation-based Regularization (PEPR) method is proposed to improve the image quality in Electrical Impedance Tomography (EIT). PEPR method defines the regularization parameter as a function of the projection error developed by difference between experimental measurements and calculated data. The regularization parameter in the reconstruction algorithm gets modified automatically according to the noise level in measured data and ill-posedness of the Hessian matrix. Resistivity imaging of practical phantoms in a Model Based Iterative Image Reconstruction (MoBIIR) algorithm as well as with Electrical Impedance Diffuse Optical Reconstruction Software (EIDORS) with PEPR. The effect of PEPR method is also studied with phantoms with different configurations and with different current injection methods. All the resistivity images reconstructed with PEPR method are compared with the single step regularization (STR) and Modified Levenberg Regularization (LMR) techniques. The results show that, the PEPR technique reduces the projection error and solution error in each iterations both for simulated and experimental data in both the algorithms and improves the reconstructed images with better contrast to noise ratio (CNR), percentage of contrast recovery (PCR), coefficient of contrast (COC) and diametric resistivity profile (DRP). (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we first recast the generalized symmetric eigenvalue problem, where the underlying matrix pencil consists of symmetric positive definite matrices, into an unconstrained minimization problem by constructing an appropriate cost function, We then extend it to the case of multiple eigenvectors using an inflation technique, Based on this asymptotic formulation, we derive a quasi-Newton-based adaptive algorithm for estimating the required generalized eigenvectors in the data case. The resulting algorithm is modular and parallel, and it is globally convergent with probability one, We also analyze the effect of inexact inflation on the convergence of this algorithm and that of inexact knowledge of one of the matrices (in the pencil) on the resulting eigenstructure. Simulation results demonstrate that the performance of this algorithm is almost identical to that of the rank-one updating algorithm of Karasalo. Further, the performance of the proposed algorithm has been found to remain stable even over 1 million updates without suffering from any error accumulation problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanical properties of polyvinyl alcohol (PVA) and poly(methyl methacrylate) (PMMA)-matrix composites reinforced by functionalized few-layer graphene (FG) have been evaluated using the nano-indentation technique. A significant increase in both the elastic modulus and hardness is observed with the addition of 0.6 wt% of graphene. The crystallinity of PVA also increases with the addition of FG. This and the good mechanical interaction between the polymer and the FG, which provides better load transfer between the matrix and the fiber, are suggested to be responsible for the observed improvement in mechanical properties of the polymers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of structural damage detection based on measured frequency response functions of the structure in its damaged and undamaged states is considered. A novel procedure that is based on inverse sensitivity of the singular solutions of the system FRF matrix is proposed. The treatment of possibly ill-conditioned set of equations via regularization scheme and questions on spatial incompleteness of measurements are considered. The application of the method in dealing with systems with repeated natural frequencies and (or) packets of closely spaced modes is demonstrated. The relationship between the proposed method and the methods based on inverse sensitivity of eigensolutions and frequency response functions is noted. The numerical examples on a 5-degree of freedom system, a one span free-free beam and a spatially periodic multi-span beam demonstrate the efficacy of the proposed method and its superior performance vis-a-vis methods based on inverse eigensensitivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An expression is derived for the probability that the determinant of an n x n matrix over a finite field vanishes; from this it is deduced that for a fixed field this probability tends to 1 as n tends to.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eklundh's (1972) algorithm to transpose a large matrix stored on an external device such as a disc has been programmed and tested. A simple description of computer implementation is given in this note.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Error estimates for the error reproducing kernel method (ERKM) are provided. The ERKM is a mesh-free functional approximation scheme [A. Shaw, D. Roy, A NURBS-based error reproducing kernel method with applications in solid mechanics, Computational Mechanics (2006), to appear (available online)], wherein a targeted function and its derivatives are first approximated via non-uniform rational B-splines (NURBS) basis function. Errors in the NURBS approximation are then reproduced via a family of non-NURBS basis functions, constructed using a polynomial reproduction condition, and added to the NURBS approximation of the function obtained in the first step. In addition to the derivation of error estimates, convergence studies are undertaken for a couple of test boundary value problems with known exact solutions. The ERKM is next applied to a one-dimensional Burgers equation where, time evolution leads to a breakdown of the continuous solution and the appearance of a shock. Many available mesh-free schemes appear to be unable to capture this shock without numerical instability. However, given that any desired order of continuity is achievable through NURBS approximations, the ERKM can even accurately approximate functions with discontinuous derivatives. Moreover, due to the variation diminishing property of NURBS, it has advantages in representing sharp changes in gradients. This paper is focused on demonstrating this ability of ERKM via some numerical examples. Comparisons of some of the results with those via the standard form of the reproducing kernel particle method (RKPM) demonstrate the relative numerical advantages and accuracy of the ERKM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concurrency matrix aids the detection of bit steerability of microcommand sets in a microprogram. In the present work, the concept of don't-cares is introduced into the concurrency matrix to identify the bit steerable microcommand sets.