96 resultados para EDGE DISLOCATIONS
em Indian Institute of Science - Bangalore - Índia
Resumo:
The dynamics and interactions of edge dislocations in a nearly aligned sheared lamellar mesophase is analysed to provide insights into the relationship between disorder and rheology. First, the mesoscale permeation and momentum equations for the displacement field in the presence of external forces are derived from the model H equations for the concentration and momentum field. The secondary flow generated due to the mean shear around an isolated defect is calculated, and the excess viscosity due to the presence of the defect is determined from the excess energy dissipation due to the secondary flow. The excess viscosity for an isolated defect is found to increase with system size in the cross-stream direction as L-3/2 for an isolated defect, though this divergence is cut-off due to interactions in a defect suspension. As the defects are sheared past each other due to the mean flow, the Peach-Koehler force due to elastic interaction between pairs of defects is found to cause no net displacement relative to each other as they approach from large separation to the distance of closest approach. The equivalent force due to viscous interactions is found to increase the separation for defects of opposite sign, and decrease the separation for defects of same sign. During defect interactions, we find that there is no buckling instability due to dilation of layers for systems of realistic size. However, there is another mechanism, which is the velocity difference generated across a slightly deformed bilayer due to the mean shear, which could result in the creation of new defects. (C) 2013 AIP Publishing LLC.
Resumo:
The structure-rheology relationship in the shear alignment of a lamellar fluid is studied using a mesoscale model which provides access to the lamellar configurations and the rheology. Based on the equations and free energy functional, the complete set of dimensionless groups that characterize the system are the Reynolds number (rho gamma L-2/mu), the Schmidt number (mu/rho D), the Ericksen number (mu(gamma)/B), the interface sharpness parameter r, the ratio of the viscosities of the hydrophilic and hydrophobic parts mu(r), and the ratio of the system size and layer spacing (L/lambda). Here, rho and mu are the fluid density and average viscosity, (gamma) over dot is the applied strain rate, D is the coefficient of diffusion, B is the compression modulus, mu(r) is the maximum difference in the viscosity of the hydrophilic and hydrophobic parts divided by the average viscosity, and L is the system size in the cross-stream direction. The lattice Boltzmann method is used to solve the concentration and momentum equations for a two dimensional system of moderate size (L/lambda = 32) and for a low Reynolds number, and the other parameters are systematically varied to examine the qualitative features of the structure and viscosity evolution in different regimes. At low Schmidt numbers where mass diffusion is faster than momentum diffusion, there is fast local formation of randomly aligned domains with ``grain boundaries,'' which are rotated by the shear flow to align along the extensional axis as time increases. This configuration offers a high resistance to flow, and the layers do not align in the flow direction even after 1000 strain units, resulting in a viscosity higher than that for an aligned lamellar phase. At high Schmidt numbers where momentum diffusion is fast, the shear flow disrupts layers before they are fully formed by diffusion, and alignment takes place by the breakage and reformation of layers by shear, resulting in defects (edge dislocations) embedded in a background of nearly aligned layers. At high Ericksen number where the viscous forces are large compared to the restoring forces due to layer compression and bending, shear tends to homogenize the concentration field, and the viscosity decreases significantly. At very high Ericksen number, shear even disrupts the layering of the lamellar phase. At low Ericksen number, shear results in the formation of well aligned layers with edge dislocations. However, these edge dislocations take a long time to anneal; the relatively small misalignment due to the defects results in a large increase in viscosity due to high layer stiffness and due to shear localization, because the layers between defects get pinned and move as a plug with no shear. An increase in the viscosity contrast between the hydrophilic and hydrophobic parts does not alter the structural characteristics during alignment. However, there is a significant increase in the viscosity, due to pinning of the layers between defects, which results in a plug flow between defects and a localization of the shear to a part of the domain.
Resumo:
Non-Abelian quantum Hall states are characterized by the simultaneous appearance of charge and neutral gapless edge modes, with the structure of the latter being intricately related to the existence of bulk quasiparticle excitations obeying non-Abelian statistics. Here we propose a scenario for detecting the neutral modes by having two point contacts in series separated by a distance set by the thermal equilibration length of the charge mode. We show that by using the first point contact as a heating device, the excess charge noise measured at the second point contact carries a nontrivial signature of the presence of the neutral mode. We also obtain explicit expressions for the thermal conductance and corresponding Lorentz number for transport across a quantum point contact between two edges held at different temperatures and chemical potentials.
Resumo:
Crystals growing from solution, the vapour phase and from supercooled melt exhibit, as a rule, planar faces. The geometry and distribution of dislocations present within the crystals thus grown are strongly related to the growth on planar faces and to the different growth sectors rather than the physical properties of the crystals and the growth methods employed. As a result, many features of generation and geometrical arrangement of defects are common to extremely different crystal species. In this paper these commoner aspects of dislocation generation and configuration which permits one to predict their nature and distribution are discussed. For the purpose of imaging the defects a very versatile and widely applicable technique viz. x-ray diffraction topography is used. Growth dislocations in solution grown crystals follow straight path with strongly defined directions. These preferred directions which in most cases lie within an angle of ±15° to the growth normal depend on the growth direction and on the Burger's vector involved. The potential configuration of dislocations in the growing crystals can be evaluated using the theory developed by Klapper which is based on linear anisotropic elastic theory. The preferred line direction of a particular dislocation corresponds to that in which the dislocation energy per unit growth length is a minimum. The line direction analysis based on this theory enables one to characterise dislocations propagating in a growing crystal. A combined theoretical analysis and experimental investigation based on the above theory is presented.
Resumo:
LIII absorption edge measurements clearly delineate 3+ and 4+ states of Ce. Absorption edges of 3+ compounds show a single peak, while those of 4+ compounds show two peaks, both appearing at higher energies than the characteristic peaks of 3+ compounds. In systems where there is interconfigurational fluctuation, features due to both 3+ and 4+ states are distinctly seen.
Resumo:
We study transport across a point contact separating two line junctions in a nu = 5/2 quantum Hall system. We analyze the effect of inter-edge Coulomb interactions between the chiral bosonic edge modes of the half-filled Landau level (assuming a Pfaffian wave function for the half-filled state) and of the two fully filled Landau levels. In the presence of inter-edge Coulomb interactions between all the six edges participating in the line junction, we show that the stable fixed point corresponds to a point contact that is neither fully opaque nor fully transparent. Remarkably, this fixed point represents a situation where the half-filled level is fully transmitting, while the two filled levels are completely backscattered; hence the fixed point Hall conductance is given by G(H) = 1/2e(2)/h. We predict the non-universal temperature power laws by which the system approaches the stable fixed point from the two unstable fixed points corresponding to the fully connected case (G(H) = 5/2e(2)/h) and the fully disconnected case (G(H) = 0).
Resumo:
We analyse warps in the nearby edge-on spiral galaxies observed in the Spitzer/Infrared Array Camera (IRAC)4.5-mu m band. In our sample of 24 galaxies, we find evidence of warp in 14 galaxies. We estimate the observed onset radii for the warps in a subsample of 10 galaxies. The dark matter distribution in each of these galaxies are calculated using the mass distribution derived from the observed light distribution and the observed rotation curves. The theoretical predictions of the onset radii for the warps are then derived by applying a self-consistent linear response theory to the obtained mass models for six galaxies with rotation curves in the literature. By comparing the observed onset radii to the theoretical ones, we find that discs with constant thickness can not explain the observations; moderately flaring discs are needed. The required flaring is consistent with the observations. Our analysis shows that the onset of warp is not symmetric in our sample of galaxies. We define a new quantity called the onset-asymmetry index and study its dependence on galaxy properties. The onset asymmetries in warps tend to be larger in galaxies with smaller dis scalelengths. We also define and quantify the global asymmetry in the stellar light distribution, that we call the edge-on asymmetry in edge-on galaxies. It is shown that in most cases the onset asymmetry in warp is actually anticorrelated with the measured edge-on asymmetry in our sample of edge-on galaxies and this could plausibly indicate that the surrounding dark matter distribution is asymmetric.
Resumo:
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic (2-colored) cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a'(G). Let Delta = Delta(G) denote the maximum degree of a vertex in a graph G. A complete bipartite graph with n vertices on each side is denoted by K-n,K-n. Alon, McDiarmid and Reed observed that a'(K-p-1,K-p-1) = p for every prime p. In this paper we prove that a'(K-p,K-p) <= p + 2 = Delta + 2 when p is prime. Basavaraju, Chandran and Kummini proved that a'(K-n,K-n) >= n + 2 = Delta + 2 when n is odd, which combined with our result implies that a'(K-p,K-p) = p + 2 = Delta + 2 when p is an odd prime. Moreover we show that if we remove any edge from K-p,K-p, the resulting graph is acyclically Delta + 1 = p + 1-edge-colorable. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a'(G). It was conjectured by Alon, Sudakov, and Zaks that for any simple and finite graph G, a'(G) <= Delta+2, where Delta=Delta(G) denotes the maximum degree of G. We prove the conjecture for connected graphs with Delta(G)<= 4, with the additional restriction that m <= 2n-1, where n is the number of vertices and m is the number of edges in G. Note that for any graph G, m <= 2n, when Delta(G)<= 4. It follows that for any graph G if Delta(G)<= 4, then a'(G) <= 7.
Resumo:
The chemical shifts in the X-ray K-absorption edge of strontium in various compounds and in six minerals are measured using a single crystal X-ray spectrometer. Besides valence, the shifts are found to be governed by ionic charges on the absorbing ions, which are calculated employing Pauling's method. For the minerals the plot of chemical shift against the theoretically calculated ionic charges is used to determine the charges on the strontium ions.
Resumo:
Following a Migdal-Kadanoff-type bond moving procedure, we derive the renormalisation-group equations for the characteristic function of the full probability distribution of resistance (conductance) of a three-dimensional disordered system. The resulting recursion relations for the first two cumulants, K, the mean resistance and K ~ t,he meansquare deviation of resistance exhibit a mobility edge dominated by large dispersion, i.e., K $ ’/ K=, 1, suggesting inadequacy of the one-parameter scaling ansatz.
Resumo:
X-ray absorption edge and X-ray photoelectron spectroscopic studies of As-Se glasses seem to support a chemical ordering model.
Resumo:
By applying the theory of the asymptotic distribution of extremes and a certain stability criterion to the question of the domain of convergence in the probability sense, of the renormalized perturbation expansion (RPE) for the site self-energy in a cellularly disordered system, an expression has been obtained in closed form for the probability of nonconvergence of the RPE on the real-energy axis. Hence, the intrinsic mobility mu (E) as a function of the carrier energy E is deduced to be given by mu (E)= mu 0exp(-exp( mod E mod -Ec) Delta ), where Ec is a nominal 'mobility edge' and Delta is the width of the random site-energy distribution. Thus mobility falls off sharply but continuously for mod E mod >Ec, in contradistinction with the notion of an abrupt 'mobility edge' proposed by Cohen et al. and Mott. Also, the calculated electrical conductivity shows a temperature dependence in qualitative agreement with experiments on disordered semiconductors.
Resumo:
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and it is denoted by a′(G). From a result of Burnstein it follows that all subcubic graphs are acyclically edge colorable using five colors. This result is tight since there are 3-regular graphs which require five colors. In this paper we prove that any non-regular connected graph of maximum degree 3 is acyclically edge colorable using at most four colors. This result is tight since all edge maximal non-regular connected graphs of maximum degree 3 require four colors.