181 resultados para Dynamics of a particle.
em Indian Institute of Science - Bangalore - Índia
Resumo:
It is generally known that the orbital diamagnetism of a classical system of charged particles in thermal equilibrium is identically zero —the Bohr-van Leeuwen theorem. Physically, this null result derives from the exact cancellation of the orbital diamagnetic moment associated with the complete cyclotron orbits of the charged particles by the paramagnetic moment subtended by the incomplete orbits skipping the boundary in the opposite sense. Motivated by this crucial but subtle role of the boundary, we have simulated here the case of a finite but unbounded system, namely that of a charged particle moving on the surface of a sphere in the presence of an externally applied uniform magnetic field. Following a real space-time approach based on the classical Langevin equation, we have computed the orbital magnetic moment that now indeed turns out to be non-zero and has the diamagnetic sign. To the best of our knowledge, this is the first report of the possibility of finite classical diamagnetism in principle, and it is due to the avoided cancellation.
Resumo:
The effect of correlations on the viscosity of a dilute sheared inelastic fluid is analyzed using the ring-kinetic equation for the two-particle correlation function. The leading-order contribution to the stress in an expansion in epsilon=(1-e)(1/2) is calculated, and it is shown that the leading-order viscosity is identical to that obtained from the Green-Kubo formula, provided the stress autocorrelation function in a sheared steady state is used in the Green-Kubo formula. A systemmatic extension of this to higher orders is also formulated, and the higher-order contributions to the stress from the ring-kinetic equation are determined in terms of the terms in the Chapman-Enskog solution for the Boltzmann equation. The series is resummed analytically to obtain a renormalized stress equation. The most dominant contributions to the two-particle correlation function are products of the eigenvectors of the conserved hydrodynamic modes of the two correlated particles. In Part I, it was shown that the long-time tails of the velocity autocorrelation function are not present in a sheared fluid. Using those results, we show that correlations do not cause a divergence in the transport coefficients; the viscosity is not divergent in two dimensions, and the Burnett coefficients are not divergent in three dimensions. The equations for three-particle and higher correlations are analyzed diagrammatically. It is found that the contributions due to the three-particle and higher correlation functions to the renormalized viscosity are smaller than those due to the two-particle distribution function in the limit epsilon -> 0. This implies that the most dominant correlation effects are due to the two-particle correlations.
Resumo:
The structure and dynamics of the two-dimensional linear shear flow of inelastic disks at high area fractions are analyzed. The event-driven simulation technique is used in the hard-particle limit, where the particles interact through instantaneous collisions. The structure (relative arrangement of particles) is analyzed using the bond-orientational order parameter. It is found that the shear flow reduces the order in the system, and the order parameter in a shear flow is lower than that in a collection of elastic hard disks at equilibrium. The distribution of relative velocities between colliding particles is analyzed. The relative velocity distribution undergoes a transition from a Gaussian distribution for nearly elastic particles, to an exponential distribution at low coefficients of restitution. However, the single-particle distribution function is close to a Gaussian in the dense limit, indicating that correlations between colliding particles have a strong influence on the relative velocity distribution. This results in a much lower dissipation rate than that predicted using the molecular chaos assumption, where the velocities of colliding particles are considered to be uncorrelated.
Resumo:
Shear flows of inelastic spheres in three dimensions in the Volume fraction range 0.4-0.64 are analysed using event-driven simulations.Particle interactions are considered to be due to instantaneous binary collisions, and the collision model has a normal coefficient of restitution e(n) (negative of the ratio of the post- and pre-collisional relative velocities of the particles along the line joining the centres) and a tangential coefficient of restitution e(t) (negative of the ratio of post- and pre-collisional velocities perpendicular to the line Joining the centres). Here, we have considered both e(t) = +1 and e(t) = e(n) (rough particles) and e(t) =-1 (smooth particles), and the normal coefficient of restitution e(n) was varied in the range 0.6-0.98. Care was taken to avoid inelastic collapse and ensure there are no particle overlaps during the simulation. First, we studied the ordering in the system by examining the icosahedral order parameter Q(6) in three dimensions and the planar order parameter q(6) in the plane perpendicular to the gradient direction. It was found that for shear flows of sufficiently large size, the system Continues to be in the random state, with Q(6) and q(6) close to 0, even for volume fractions between phi = 0.5 and phi = 0.6; in contrast, for a system of elastic particles in the absence of shear, the system orders (crystallizes) at phi = 0.49. This indicates that the shear flow prevents ordering in a system of sufficiently large size. In a shear flow of inelastic particles, the strain rate and the temperature are related through the energy balance equation, and all time scales can be non-dimensionalized by the inverse of the strain rate. Therefore, the dynamics of the system are determined only by the volume fraction and the coefficients of restitution. The variation of the collision frequency with volume fraction and coefficient of estitution was examined. It was found, by plotting the inverse of the collision frequency as a function of volume fraction, that the collision frequency at constant strain rate diverges at a volume fraction phi(ad) (volume fraction for arrested dynamics) which is lower than the random close-packing Volume fraction 0.64 in the absence of shear. The volume fraction phi(ad) decreases as the coefficient of restitution is decreased from e(n) = 1; phi(ad) has a minimum of about 0.585 for coefficient of restitution e(n) in the range 0.6-0.8 for rough particles and is slightly larger for smooth particles. It is found that the dissipation rate and all components of the stress diverge proportional to the collision frequency in the close-packing limit. The qualitative behaviour of the increase in the stress and dissipation rate are well Captured by results derived from kinetic theory, but the quantitative agreement is lacking even if the collision frequency obtained from simulations is used to calculate the pair correlation function used In the theory.
Resumo:
The distribution of relative velocities between colliding particles in shear flows of inelastic spheres is analysed in the Volume fraction range 0.4-0.64. Particle interactions are considered to be due to instantaneous binary collisions, and the collision model has a normal coefficient of restitution e(n) (negative of the ratio of the post- and pre-collisional relative velocities of the particles along the line joining the centres) and a tangential coefficient of restitution e(t) (negative of the ratio of post- and pre-collisional velocities perpendicular to line joining the centres). The distribution or pre-collisional normal relative velocities (along the line Joining the centres of the particles) is Found to be an exponential distribution for particles with low normal coefficient of restitution in the range 0.6-0.7. This is in contrast to the Gaussian distribution for the normal relative velocity in all elastic fluid in the absence of shear. A composite distribution function, which consists of an exponential and a Gaussian component, is proposed to span the range of inelasticities considered here. In the case of roughd particles, the relative velocity tangential to the surfaces at contact is also evaluated, and it is found to be close to a Gaussian distribution even for highly inelastic particles.Empirical relations are formulated for the relative velocity distribution. These are used to calculate the collisional contributions to the pressure, shear stress and the energy dissipation rate in a shear flow. The results of the calculation were round to be in quantitative agreement with simulation results, even for low coefficients of restitution for which the predictions obtained using the Enskog approximation are in error by an order of magnitude. The results are also applied to the flow down an inclined plane, to predict the angle of repose and the variation of the volume fraction with angle of inclination. These results are also found to be in quantitative agreement with previous simulations.
Resumo:
Starting from a microscopic theory, we derive a master equation for a harmonic oscillator coupled to a bath of noninteracting oscillators. We follow a nonperturbative approach, proposed earlier by us for the free Brownian particle. The diffusion constants are calculated analytically and the positivity of the master equation is shown to hold above a critical temperature. We compare the long time behavior of the average kinetic and potential energies with known thermodynamic results. In the limit of vanishing oscillator frequency of the system, we recover the results of the free Brownian particle.
Resumo:
We consider a double dot system of equivalent, capacitively coupled semiconducting quantum dots, each coupled to its own lead, in a regime where there are two electrons on the double dot. Employing the numerical renormalization group, we focus here on single-particle dynamics and the zero-bias conductance, considering in particular the rich range of behaviour arising as the interdot coupling is progressively increased through the strong-coupling (SC) phase, from the spin-Kondo regime, across the SU(4) point to the charge-Kondo regime, and then towards and through the quantum phase transition to a charge-ordered ( CO) phase. We first consider the two-self-energy description required to describe the broken symmetry CO phase, and implications thereof for the non-Fermi liquid nature of this phase. Numerical results for single-particle dynamics on all frequency scales are then considered, with particular emphasis on universality and scaling of low-energy dynamics throughout the SC phase. The role of symmetry breaking perturbations is also briefly discussed.
Resumo:
Ultrathin films at fluid interfaces are important not only from a fundamental point of view as 2D complex fluids but have also become increasingly relevant in the development of novel functional materials. There has been an explosion in the synthesis work in this area over the last decade, giving rise to many exotic nanostructures at fluid interfaces. However, the factors controlling particle nucleation, growth and self-assembly at interfaces are poorly understood on a quantitative level. We will outline some of the recent attempts in this direction. Some of the selected investigations examining the macroscopic mechanical properties of molecular and particulate films at fluid interfaces will be reviewed. We conclude with a discussion of the electronic properties of these films that have potential technological and biological applications.
Resumo:
Recent computer simulations on zeolites Y and A have found that the diffusion coefficient and the rate of intercage diffusion exhibit, apart from a linear dependence on the reciprocal of the square of the sorbate diameter, an anomalous peak as sorbate diameter approaches the window diameter. Here we report molecular dynamics simulations of zeolite NaA incorporating framework flexibility as a function of sorbate diameter in order to verify the existence of anomalous diffusion. Results suggest persistence of anomalous diffusion or ring effect. This suggests that the anomalous behavior is a general effect characteristic of zeolites Y and A. The barrier for diffusion across the eight-ring window is seen to be negative and is found to decrease with sorbate size. The effect of sorbate on the cage motion has also been investigated. Results suggest that the window expands during intercage migration only if the sorbate size is comparable to the window diameter. Flexible cage simulations yield a higher value for the diffusion coefficient and also the rate of intercage diffusion. This increase has been shown to be due to an increase in the intercage diffusions via the centralized diffusion mode rather than the surface-mediated mode. It is shown that this increase arises from an increase in the single particle density distribution in the region near the cage center.
Resumo:
We propose a method for the dynamic simulation of a collection of self-propelled particles in a viscous Newtonian fluid. We restrict attention to particles whose size and velocity are small enough that the fluid motion is in the creeping flow regime. We propose a simple model for a self-propelled particle, and extended the Stokesian Dynamics method to conduct dynamic simulations of a collection of such particles. In our description, each particle is treated as a sphere with an orientation vector p, whose locomotion is driven by the action of a force dipole Sp of constant magnitude S0 at a point slightly displaced from its centre. To simplify the calculation, we place the dipole at the centre of the particle, and introduce a virtual propulsion force Fp to effect propulsion. The magnitude F0 of this force is proportional to S0. The directions of Sp and Fp are determined by p. In isolation, a self-propelled particle moves at a constant velocity u0 p, with the speed u0 determined by S0. When it coexists with many such particles, its hydrodynamic interaction with the other particles alters its velocity and, more importantly, its orientation. As a result, the motion of the particle is chaotic. Our simulations are not restricted to low particle concentration, as we implement the full hydrodynamic interactions between the particles, but we restrict the motion of particles to two dimensions to reduce computation. We have studied the statistical properties of a suspension of self-propelled particles for a range of the particle concentration, quantified by the area fraction φa. We find several interesting features in the microstructure and statistics. We find that particles tend to swim in clusters wherein they are in close proximity. Consequently, incorporating the finite size of the particles and the near-field hydrodynamic interactions is of the essence. There is a continuous process of breakage and formation of the clusters. We find that the distributions of particle velocity at low and high φa are qualitatively different; it is close to the normal distribution at high φa, in agreement with experimental measurements. The motion of the particles is diffusive at long time, and the self-diffusivity decreases with increasing φa. The pair correlation function shows a large anisotropic build-up near contact, which decays rapidly with separation. There is also an anisotropic orientation correlation near contact, which decays more slowly with separation. Movies are available with the online version of the paper.
Resumo:
Recent optical kerr effect (OKE) studies have demonstrated that orientational relaxation of rod-like nematogens exhibits temporal power law decay at intermediate times not only near the isotropic–nematic (I–N) phase boundary but also in the nematic phase. Such behaviour has drawn an intriguing analogy with supercooled liquids. We have investigated both collective and single-particle orientational dynamics of a family of model system of thermotropic liquid crystals using extensive computer simulations. Several remarkable features of glassy dynamics are on display including non-exponential relaxation, dynamical heterogeneity, and non-Arrhenius temperature dependence of the orientational relaxation time. Over a temperature range near the I–N phase boundary, the system behaves remarkably like a fragile glass-forming liquid. Using proper scaling, we construct the usual relaxation time versus inverse temperature plot and explicitly demonstrate that one can successfully define a density dependent fragility of liquid crystals. The fragility of liquid crystals shows a temperature and density dependence which is remarkably similar to the fragility of glass forming supercooled liquids. Energy landscape analysis of inherent structures shows that the breakdown of the Arrhenius temperature dependence of relaxation rate occurs at a temperature that marks the onset of the growth of the depth of the potential energy minima explored by the system. A model liquid crystal, consisting of disk-like molecules, has also been investigated in molecular dynamics simulations for orientational relaxation along two isobars starting from the high temperature isotropic phase. The isobars have been so chosen that the phase sequence isotropic (I)–nematic (N)–columnar (C) appears upon cooling along one of them and the sequence isotropic (I)–columnar(C) along the other. While the orientational relaxation in the isotropic phase near the I–N phase transition shows a power law decay at short to intermediate times, such power law relaxation is not observed in the isotropic phase near the I–C phase boundary. The origin of the power law decay in the single-particle second-rank orientational time correlation function (OTCF) is traced to the growth of the orientational pair distribution functions near the I–N phase boundary. As the system settles into the nematic phase, the decay of the single-particle second-rank orientational OTCF follows a pattern that is similar to what is observed with calamitic liquid crystals and supercooled molecular liquids.
Resumo:
We present results of surface mechanical and particle tracking measurements of nanoparticles trapped at the air-water interface as a function of their areal density. We monitor both the surface pressure (II) and isothermal compression modulus (epsilon) as well as the dynamics of nanoparticle clusters, using fluorescence confocal microscopy while they are compressed to very high density near the two dimensional close packing density Phi similar to 0.82. We observe non-monotonic variation in both epsilon and the dynamic heterogeneity, characterized by the dynamical susceptibility chi(4) with Phi, in such high density monolayers. We provide insight into the underlying nature of such transitions in close packed high density nanoparticle monolayers in terms of the morphology and flexibility of these soft colloidal particles.. We discuss the significance our results in the context of related studies on two dimensional granular or colloidal systems. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
We consider a quantum particle, moving on a lattice with a tight-binding Hamiltonian, which is subjected to measurements to detect its arrival at a particular chosen set of sites. The projective measurements are made at regular time intervals tau, and we consider the evolution of the wave function until the time a detection occurs. We study the probabilities of its first detection at some time and, conversely, the probability of it not being detected (i.e., surviving) up to that time. We propose a general perturbative approach for understanding the dynamics which maps the evolution operator, which consists of unitary transformations followed by projections, to one described by a non-Hermitian Hamiltonian. For some examples of a particle moving on one-and two-dimensional lattices with one or more detection sites, we use this approach to find exact expressions for the survival probability and find excellent agreement with direct numerical results. A mean-field model with hopping between all pairs of sites and detection at one site is solved exactly. For the one-and two-dimensional systems, the survival probability is shown to have a power-law decay with time, where the power depends on the initial position of the particle. Finally, we show an interesting and nontrivial connection between the dynamics of the particle in our model and the evolution of a particle under a non-Hermitian Hamiltonian with a large absorbing potential at some sites.
Resumo:
We design rapidly folding sequences by assigning the strongest couplings to the contacts present in a target native state in a two dimensional model of heteropolymers. The pathways to folding and their dependence on the temperature are illustrated via a mapping of the dynamics into motion within the space of the maximally compact cells.