11 resultados para Dwarf revertion
em Indian Institute of Science - Bangalore - Índia
Resumo:
Defending a large social insect colony containing several thousands of workers requires the simultaneous action of many individuals. Ideally this action involves communication between the workers, enabling coordinated action and a fast response. The Asian dwarf honeybee, Apis florea, is a small honeybee with an open nesting habit and a comparatively small colony size, features that leave them particularly exposed to predators. We describe here a novel defence response of these bees in which the emission of an initial warning signal from one individual (“piping”) is followed 0.3 to 0.7 seconds later by a general response from a large number of bees (“hissing”). Piping is audible to the human ear, with a fundamental frequency of 384 ± 31Hz and lasting for 0.82 ± 0.35 seconds. Hissing is a broad band, noisy signal, clearly audible to the human observer and produced by slight but visible movements of the bees' wings. Hissing begins in individuals close to the piping bee, spreads rapidly to neighbours and results in an impressive coordinated crescendo occasionally involving the entire colony. Piping and hissing are accompanied by a marked decrease, or even cessation, of worker activities such as forager dancing and departures from the colony. We show that whereas hissing of the colony can be elicited without piping, the sequential and correlated piping and hissing response is specific to the presence of potential predators close to the colony. We suggest that the combined audio-visual effect of the hissing might deter small predators, while the cessation of flight activity could decrease the risk of predation by birds and insects which prey selectively on flying bees.
Resumo:
In this paper, we model dwarf galaxies as a two-component system of gravitationally coupled stars and atomic hydrogen gas in the external force field of a pseudo-isothermal dark matter halo, and numerically obtain the radial distribution of HI vertical scale heights. This is done for a group of four dwarf galaxies (DDO 154, Ho II, IC 2574 and NGC 2366) for which most necessary input parameters are available from observations. The formulation of the equations takes into account the rising rotation curves generally observed in dwarf galaxies. The inclusion of self-gravity of the gas into the model at par with that of the stars results in scale heights that are smaller than what was obtained by previous authors. This is important as the gas scale height is often used for deriving other physical quantities. The inclusion of gas self-gravity is particularly relevant in the case of dwarf galaxies where the gas cannot be considered a minor perturbation to the mass distribution of the stars. We find that three out of four galaxies studied show a flaring of their HI discs with increasing radius, by a factor of a few within several disc scale lengths. The fourth galaxy has a thick HI disc throughout. This flaring arises as a result of the gas velocity dispersion remaining constant or decreasing only slightly while the disc mass distribution declines exponentially as a function of radius.
Strongly magnetized cold degenerate electron gas: Mass-radius relation of the magnetized white dwarf
Resumo:
We consider a relativistic, degenerate electron gas at zero temperature under the influence of a strong, uniform, static magnetic field, neglecting any form of interactions. Since the density of states for the electrons changes due to the presence of the magnetic field (which gives rise to Landau quantization), the corresponding equation of state also gets modified. In order to investigate the effect of very strong magnetic field, we focus only on systems in which a maximum of either one, two, or three Landau level(s) is/are occupied. This is important since, if a very large number of Landau levels are filled, it implies a very low magnetic field strength which yields back Chandrasekhar's celebrated nonmagnetic results. The maximum number of occupied Landau levels is fixed by the correct choice of two parameters, namely, the magnetic field strength and the maximum Fermi energy of the system. We study the equations of state of these one-level, two-level, and three-level systems and compare them by taking three different maximum Fermi energies. We also find the effect of the strong magnetic field on the mass-radius relation of the underlying star composed of the gas stated above. We obtain an exciting result that it is possible to have an electron-degenerate static star, namely, magnetized white dwarfs, with a mass significantly greater than the Chandrasekhar limit in the range 2.3-2.6M(circle dot), provided it has an appropriate magnetic field strength and central density. In fact, recent observations of peculiar type Ia supernovae-SN 2006gz, SN 2007if, SN 2009dc, SN 2003fg-seem to suggest super-Chandrasekhar-mass white dwarfs with masses up to 2.4-2.8M(circle dot) as their most likely progenitors. Interestingly, our results seem to lie within these observational limits.
Resumo:
We show that the upper bound for the central magnetic field of a super-Chandrasekhar white dwarf calculated by Nityananda and Konar Phys. Rev. D 89, 103017 (2014)] and in the concerned comment, by the same authors, against our work U. Das and B. Mukhopadhyay, Phys. Rev. D 86, 042001 (2012)] is erroneous. This in turn strengthens the argument in favor of the stability of the recently proposed magnetized super-Chandrasekhar white dwarfs. We also point out several other numerical errors in their work. Overall we conclude that the arguments put forth by Nityananda and Konar are misleading.
Resumo:
Bees of the genus Apis are important foragers of nectar and pollen resources. Although the European honeybee, Apis mellifera, has been well studied with respect to its sensory abilities, learning behaviour and role as pollinators, much less is known about the other Apis species. We studied the anatomical spatial resolution and absolute sensitivity of the eyes of three sympatric species of Asian honeybees, Apis cerana, Apis florea and Apis dorsata and compared them with the eyes of A. mellifera. Of these four species, the giant honeybee A. dorsata (which forages during moonlit nights) has the lowest spatial resolution and the most sensitive eyes, followed by A. mellifera, A. cerana and the dwarf honeybee, A. florea (which has the smallest acceptance angles and the least sensitive eyes). Moreover, unlike the strictly diurnal A. cerana and A. florea, A. dorsata possess large ocelli, a feature that it shares with all dim-light bees. However, the eyes of the facultatively nocturnal A. dorsata are much less sensitive than those of known obligately nocturnal bees such as Megalopta genalis in Panama and Xylocopa tranquebarica in India. The differences in sensitivity between the eyes of A. dorsata and other strictly diurnal Apis species cannot alone explain why the former is able to fly, orient and forage at half-moon light levels. We assume that additional neuronal adaptations, as has been proposed for A. mellifera, M. genalis and X. tranquebarica, might exist in A. dorsata.
Resumo:
In this paper, we consider the optimization of the cross-section profile of a cantilever beam under deformation-dependent loads. Such loads are encountered in plants and trees, cereal crop plants such as wheat and corn in particular. The wind loads acting on the grain-bearing spike of a wheat stalk vary with the orientation of the spike as the stalk bends; this bending and the ensuing change in orientation depend on the deformation of the plant under the same load.The uprooting of the wheat stalks under wind loads is an unresolved problem in genetically modified dwarf wheat stalks. Although it was thought that the dwarf varieties would acquire increased resistance to uprooting, it was found that the dwarf wheat plants selectively decreased the Young's modulus in order to be compliant. The motivation of this study is to investigate why wheat plants prefer compliant stems. We analyze this by seeking an optimal shape of the wheat plant's stem, which is modeled as a cantilever beam, by taking the large deflection of the stem into account with the help of co-rotational finite element beam modeling. The criteria considered here include minimum moment at the fixed ground support, adequate stiffness and strength, and the volume of material. The result reported here is an example of flexibility, rather than stiffness, leading to increased strength.
Resumo:
We report new radio continuum and 21 cm HI observations using the Giant Metrewave Radio Telescope (GMRT) of the group Holmberg 124 ( Ho 124) comprising four late-type galaxies, namely NGC 2820, Mrk 108, NGC 2814 and NGC 2805. The three galaxies, NGC 2820, Mrk 108 and NGC 2814 which are closely located in the sky plane have clearly undergone tidal interactions as seen from the various morphological tidal signatures and debris. Moreover we note various features in the group members which we believe might be due to ram pressure. In this paper, we describe four interesting results emerging from our observations: a) detection of the tidal radio continuum bridge at 330 MHz connecting the galaxies NGC 2820+ Mrk 108 with NGC 2814. The radio bridge was discovered at 1465 MHz by van der Hulst & Hummel ( 1985, A& A, 150, 17). We find that the bridge has a fairly steep spectrum with a spectral index alpha(S proportional to nu(alpha)) of - 1.8(-0.2)(+0.3) which is much steeper than the - 0.8 quoted by van der Hulst & Hummel ( 1985); b) detection of other tidal features like the tilted HI and radio continuum disk of NGC 2814, a HI streamer and a radio continuum tail arising from the south of NGC 2814. We also report the detection of a possible tidal dwarf galaxy in HI; c) sharp truncation in the HI distribution in the south of NGC 2820 and in the HI and radio continuum distribution in the north of NGC 2814. The optical disks in both the cases look undisturbed. As pointed out by Davis et al. ( 1997, AJ, 114, 613), ram pressure affects different components of the interstellar medium to varying degrees. Simple estimates of pressure in different components of the interstellar medium ( radio continuum, Ha and HI) in NGC 2820 indicate that ram pressure will significantly influence HI; d) detection of a large one-sided HI loop to the north of NGC 2820. No radio continuum emission or Ha emission is associated with the HI loop. We discuss various scenarios for the origin of this loop including a central starburst, ram pressure stripping and tidal interaction. We do not support the central starburst scenario since the loop is not detected in ionized gas. Using the upper limit on X-ray luminosity of Ho 124 (Mulchaey et al. 2003, ApJS, 145, 39), we estimate an upper limit on the intragroup medium (IGrM) density of 8.8 x 10(-4) cm(-3). For half this electron density, we estimate the ram pressure force of the IGrM to be comparable to the gravitational pull of the disk of NGC 2820. Since tidal interaction has obviously influenced the group, we suggest that the loop could have formed by ram pressure stripping if tidal effects had reduced the surface density of HI in NGC 2820. From the complex observational picture of Ho 124 and the numerical estimates, we suggest that the evolution of the Ho 124 group may be governed by both tidal forces due to the interaction and the ram pressure due to motion of the member galaxies in the IGrM and that the IGrM densities should not be too low (i.e. >= 4 x 10(-4)). However this needs to be verified by further observations.
Resumo:
We explore the consequences of the model of spin-down-induced flux expulsion for the magnetic field evolution in solitary as well as in binary neutron stars. The spin evolution of pulsars, allowing for their field evolution according to this model, is shown to be consistent with the existing observational constraints in both low- and high-mass X-ray binary systems. The contribution from pulsars recycled in massive binaries to the observed excess in the number of low-field (10(11)-10(12) G) solitary pulsars is argued to be negligible in comparison with that of normal pulsars undergoing a 'restricted' field decay predicted by the adopted field decay model. Magnetic fields of neutron stars born in close binaries with intermediate- or high-mass main-sequence companions are predicted to decay down to values as low as similar to 10(6) G, which would leave them unobservable as pulsars during most of their lifetimes. The post-recycling evolution of some of these systems can, however, account for the observed binary pulsars having neutron star or massive white dwarf companions. Pulsars recycled in the disc population low-mass binaries are expected to have residual fields greater than or similar to 10(8) G, while for those processed in globular clusters larger residual fields are predicted because of the lower field strength of the neutron star at the epoch of binary formation. A value of tau similar to 1-2 x 10(7) yr for the mean value of the Ohmic decay time-scale in the crusts of neutron stars is suggested, based on the consistency of the model predictions with the observed distribution of periods and magnetic fields in the single and binary pulsars.
Resumo:
In recent years a number of white dwarfs have been observed with very high surface magnetic fields. We can expect that the magnetic field in the core of these stars would be much higher (similar to 10(14) G). In this paper, we analytically study the effect of high magnetic field on relativistic cold electron, and hence its effect on the stability and the mass-radius relation of a magnetic white dwarf. In strong magnetic fields, the equation of state of the Fermi gas is modified and Landau quantization comes into play. For relatively very high magnetic fields (with respect to the average energy density of matter) the number of Landau levels is restricted to one or two. We analyze the equation of states for magnetized electron degenerate gas analytically and attempt to understand the conditions in which transitions from the zeroth Landau level to first Landau level occurs. We also find the effect of the strong magnetic field on the star collapsing to a white dwarf, and the mass-radius relation of the resulting star. We obtain an interesting theoretical result that it is possible to have white dwarfs with mass more than the mass set by Chandrasekhar limit.
Resumo:
Several recently discovered peculiar Type Ia supernovae seem to demand an altogether new formation theory that might help explain the puzzling dissimilarities between them and the standard Type Ia supernovae. The most striking aspect of the observational analysis is the necessity of invoking super-Chandrasekhar white dwarfs having masses similar to 2.1-2.8 M-circle dot, M-circle dot being the mass of Sun, as their most probable progenitors. Strongly magnetized white dwarfs having super-Chandrasekhar masses have already been established as potential candidates for the progenitors of peculiar Type Ia supernovae. Owing to the Landau quantization of the underlying electron degenerate gas, theoretical results yielded the observationally inferred mass range. Here, we sketch a possible evolutionary scenario by which super-Chandrasekhar white dwarfs could be formed by accretion on to a commonly observed magnetized white dwarf, invoking the phenomenon of flux freezing. This opens multiple possible evolution scenarios ending in supernova explosions of super-Chandrasekhar white dwarfs having masses within the range stated above. We point out that our proposal has observational support, such as the recent discovery of a large number of magnetized white dwarfs by the Sloan Digital Sky Survey.
Resumo:
Some low-surface-brightness galaxies are known to have extremely thin stellar discs with the vertical-to-planar axes ratio 0.1 or less, often referred to as superthin galaxies. Although their existence is now known for over three decades, the physical origin of the superthin discs is still not understood. We model the vertical thickness of the stellar disc using our model of a two-component (gravitationally coupled stars and gas) disc embedded in a dark matter halo, for a bulgeless, superthin galaxy UGC 7321 which has a dense, compact halo, and is compare with a typical dwarf irregular galaxy Holmberg II which has a low-density, non-compact halo. We show that while the presence of gas does constrain the stellar disc thickness and hence its axial ratio, it is the compact dark matter halo which plays the decisive role in determining the mean distribution of stars in the vertical direction in low-luminosity bulgeless galaxies like UGC 7321, and causes the stellar disc to be superthin. Thus, the compactness of the dark matter halo significantly affects the disc structure and this could be important for the early evolution of galaxies.