16 resultados para Durham (N.C.) -- Race relations
em Indian Institute of Science - Bangalore - Índia
Resumo:
The Palghat–Cauvery suture zone in southern India separates Archaean crustal blocks to the north and the Proterozoic Madurai block to the south. Here we present the first detailed study of a partially retrogressed eclogite (from within the Sittampundi anorthositic complex in the suture zone) that occurs as a 20-cm wide layer in a garnet gabbro layer in anorthosite. The eclogite largely consists of an assemblage of coexisting porphyroblasts of almandine–pyrope garnet and augitic clinopyroxene. However, a few garnets contain inclusions of omphacite. Rims and symplectites composed of Na–Ca amphibole and plagioclase form a retrograde assemblage. Petrographic analysis and calculated phase equilibria indicate that garnet–omphacite–rutile–melt was the peak metamorphic assemblage and that it formed at ca. 20 kbar and above 1000 °C. The eclogite was exhumed on a very tight hairpin-type, anticlockwise P–T path, which we relate to subduction and exhumation in the Palghat–Cauvery suture zone. The REE composition of the minerals suggests a basaltic oceanic crustal protolith metamorphosed in a subduction regime. Geological–structural relations combined with geophysical data from the Palghat–Cauvery suture zone suggest that the eclogite facies metamorphism was related to formation of the suture zone. Closure of the Mozambique Ocean led to development of the suture zone and to its western extension in the Betsimisaraka suture of Madagascar.
Resumo:
Phase relations in the system Ta-Rh-O were determined by analysis of quenched samples corresponding to thirteen compositions inside the ternary triangle after equilibration at 1273 K. All the Ta-Rh alloys were found to be in equilibrium with Ta2O5. Only one ternary oxide TaRhO4 was detected. Based on phase relations in the ternary system, a solid-state electrochemical cell, incorporating calcia-stabilized zirconia as the electrolyte, was designed to measure the standard Gibbs energy of formation (Delta G degrees, J mol(-1)) of TaRhO4 in the temperature range from 900 to 1300 K. For the reaction, 1/2 beta-Ta2O5 + 1/2 Rh2O3(ortho) -> TaRhO4 Delta G degrees = -42993 + 5.676T (+/- 85) The calculated decomposition temperatures of TaRhO4 are 1644 +/- 5K in pure O-2 and 1543 +/- 5K in air at a total pressure p(o) = 0.1 MPa. Thermodynamic properties of TaRhO4 at 298.15K have been evaluated from the results. The limited experimental thermodynamic data for Rh-rich alloys available in the literature are in fair accord with Miedema's model. The Gibbs energies of formation of the different phases in the binary system Ta-Rh were estimated based on these inputs, consistent with the binary phase diagram. Based on the thermodynamic information on the stability of various phases, an oxygen potential diagram for the system Ta-Rh-O at 1273K was constructed. Also presented are temperature-composition diagrams for the ternary system at constant oxygen partial pressures (po(2)/p(o) = 0.212 and 10(-6)) calculated form the basic data.
Resumo:
Tie-lines between the corundum and spinel solid solutions have been determined experimentally at 1823 K. Next, activities of FeCr2O4 and FeAl2O4 in the spinel solid solution were determined by combining the tie-line data with literature values for the activities of Cr2O3 and Al2O3 in the corundum phase. Activities and the Gibbs energy of mixing for the spinel solid solution were also obtained from a model based on cation distribution between nonequivalent crystallographic sites in the oxide lattice. The difference between the Gibbs energy of mixing obtained experimentally and from the model has been attributed to a strain enthalpy term which is relatively unchanged in magnitude from the reported at 1373 K. The integral enthalpy of mixing obtained from experimental data at 1373 and 1823 K using the second law is compared with the model result.
Resumo:
It is shown, in the composite fermion models studied by 't Hooft and others, that the requirements of Adler-Bell-Jackiw anomaly matching and n-independence are sufficient to fix the indices of composite representations. The third requirement, namely that of decoupling relations, follows from these two constraints in such models and hence is inessential.
Phase relations and thermodynamic properties of condensed phases in the system calcium-copper-oxygen
Resumo:
The isothermal sections of the phase diagram for the system Ca-Cu-0 at 1073 and 1223 K have been determined. Several compositions in the ternary system were quenched after equilibration, and the phases present were identified by optical microscopy, X-ray diffraction, and electron probe microanalysis. Two ternary compounds Ca2CuO3 and Cao.8&uO1.9s were identified at 1073 K. However, only Ca2CuO3 was found to be stable at 1223 K. The thermodynamic properties of the two ternary compounds were determined using solid-state cells incorporating either an oxide or a fluoride solid electrolyte. The results for both types of cells were internally consistent. The compound C ~ O . ~ & U Ow~h.i~ch~ c, a n also be represented as Ca15Cu18035h, as been identified in an earlier investigation as Cao.828CuOz. Using a novel variation of the galvanic cell technique, in which the emf of a cell incorporating a fluoride electrolyte is measured as a function of the oxygen potential of the gas phase in equilibrium with the condensed phase electrodes, it has been confirmed that the compound Cao.828CuO1.93 (Ca15Cu18035d) oes not have significant oxygen nonstoichiometry. Phase relations have been deduced from the thermodynamic data as a function of the partial pressure of oxygen for the system Ca-Cu-0 at 873, 1073, and 1223 K.
Resumo:
Phase relations in the system La-Rh-O at 1223 Ii have been determined by examination of equilibrated samples by optical and scanning electron microscopy, powder X-ray diffraction (XRD), and energy-dispersive analysis of X-rays (EDAX). Only one ternary oxide, LaRhO3, with distorted orthorhombic perovskite structure (Pbnm, a = 0.5525, b = 0.5680, and c = 0.7901 nm) was identified. The alloys and intermetallics along the La-Rh binary are in equilibrium with La2O3. The thermodynamic properties of LaRhO3 were determined in the temperature range 890 to 1310 K, using a solid-state cell incorporating yttria-stabilized zirconia as the electrolyte. A new four-compartment design of the emf cell was used to enhance the accuracy of measurement. For the reaction 1/2La(2)O(3) + 1/2Rh(2)O(3) --> LaRhO3, Delta G degrees = - 70 780 + 4.89T (+/- 90) J.mol(-1) The compound decomposes on heating to a mixture of La2O3, Ph and O-2. The calculated decomposition temperatures are 1843 (+/- 5) K in pure O-2 and 1728 (+/- 5) K in air at a pressure of 1.01 x 10(5) Pa. The phase diagrams for the system La-Rh-O at different partial pressures of oxygen are calculated from the thermodynamic information.
Resumo:
Wet chemical reaction of hydrated alumina gels, Al2O3.yH(2)O(80
Resumo:
Pure stoichiometric MgRh(2)O(4) could not be prepared by solid state reaction from an equimolar mixture of MgO and Rh(2)O(3) in air. The spinel phase formed always contained excess of Mg and traces of Rh or Rh(2)O(3). The spinel phase can be considered as a solid solution of Mg(2)RhO(4) in MgRh(2)O(4). The compositions of the spinel solid solution in equilibrium with different phases in the ternary system Mg-Rh-O were determined by electron probe microanalysis. The oxygen potential established by the equilibrium between Rh + MgO + Mg(1+x)Rh(2-x)O(4) was measured as a function of temperature using a solid-state cell incorporating yttria-stabilized zirconia as an electrolyte and pure oxygen at 0.1 MPa as the reference electrode. To avoid polarization of the working electrode during the measurements, an improved design of the cell with a buffer electrode was used. The standard Gibbs energies of formation of MgRh(2)O(4) and Mg(2)RhO(4) were deduced from the measured electromotive force (e.m.f.) by invoking a model for the spinel solid solution. The parameters of the model were optimized using the measured composition of the spinel solid solution in different phase fields and imposed oxygen partial pressures. The results can be summarized by the equations: MgO + beta -Rh(2)O(3) -> MgRh(2)O(4); Delta G degrees (+ 1010)/J mol(-1) = -32239 + 7.534T; 2MgO + RhO(2) -> Mg(2)RhO(4); Delta G degrees(+/- 1270)/J mol(-1) = 36427 -4.163T; Delta G(M)/J mol(-1) = 2RT(xInx + (1-x)In(1-x)) + 4650x(1-x), where Delta G degrees is the standard Gibbs free energy change for the reaction and G(M) is the free energy of mixing of the spinel solid solution Mg(1+x)Rh(2-x)O(4). (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
How do we perform rapid visual categorization?It is widely thought that categorization involves evaluating the similarity of an object to other category items, but the underlying features and similarity relations remain unknown. Here, we hypothesized that categorization performance is based on perceived similarity relations between items within and outside the category. To this end, we measured the categorization performance of human subjects on three diverse visual categories (animals, vehicles, and tools) and across three hierarchical levels (superordinate, basic, and subordinate levels among animals). For the same subjects, we measured their perceived pair-wise similarities between objects using a visual search task. Regardless of category and hierarchical level, we found that the time taken to categorize an object could be predicted using its similarity to members within and outside its category. We were able to account for several classic categorization phenomena, such as (a) the longer times required to reject category membership; (b) the longer times to categorize atypical objects; and (c) differences in performance across tasks and across hierarchical levels. These categorization times were also accounted for by a model that extracts coarse structure from an image. The striking agreement observed between categorization and visual search suggests that these two disparate tasks depend on a shared coarse object representation.
Resumo:
Thermodynamic properties of Dysprosium rhodite (DyRhO3) are measured in the temperature range from 900 to 1,300 K using a solid-state electrochemical cell incorporating yttria-stabilized zirconia as the electrolyte. The standard Gibbs free energy of formation of DyRhO3 with O-type perovskite structure from its components binary oxides, Dysprosia with C-rare earth structure and beta-Rh2O3 with orthorhombic structure, can be represented by the equation: Delta G(f(OX))(O) (+/- 182)/J mol(-1) = -52710+3.821(T/K). By using the thermodynamic data for DyRhO3 from experiment and auxiliary data for other phases from the literature, the phase relations in the system Dy-Rh-O are computed. Thermodynamic data for intermetallic phases in the binary system Dy-Rh, required for constructing the chemical potential diagrams, are evaluated using calorimetric data available in the literature for three intermetallics and Miedema's model, consistent with the phase diagram. The results are presented in the form of Gibbs triangle, oxygen potential-composition diagram, and three-dimensional chemical potential diagram at 1,273 K. Temperature-composition diagrams at constant oxygen partial pressures are also developed. The decomposition temperature of DyRhO3 is 1,732 (+/- 2.5) K in pure oxygen and 1,624 (+/- 2.5) K and in air at standard pressure.
Resumo:
Thermodynamic properties of GdRhO3 are investigated in the temperature range from 900 to 1300 K by employing a solid-state electrochemical cell, incorporating calcia-stabilized zirconia as the electrolyte. The standard Gibbs free energy of formation of GdRhO3 from component binary oxide Gd2O3 with C-rare earth structure and Rh2O3 with orthorhombic structure can be expressed as; Delta G(f(ox))(o)(+/- 60)/J mol(-1) = -56603 + 3.78(T/K) Based on the thermodynamic information on GdRhO3 from experiment and auxiliary data for binary oxides from the literature and estimated properties of Gd-Rh alloys, phase relations are computed for the system Gd-Rh-O at 1273 K. Gibbs free energies for intermetallic phases in the binary Gd-Rh are evaluated using calorimetric data available in the literature for two compositions and Miedema's model, consistent with the binary phase diagram. Isothermal section of the ternary phase diagram, oxygen potential-composition diagram and a 3-D chemical potential diagram for the system Gd-Rh-O at 1273 K are developed. Phase relations in the ternary Gd-Rh-O are also computed as a function of temperature at constant oxygen partial pressures. The ternary oxide, GdRhO3 decomposes to Gd2O3 with B-rare earth structure, metallic Rh and O-2 at 1759(+/- 2) K in pure O-2 and 1649(+/- 2) K in air at a total pressure P-0 -0.1 MPa. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Sub-solidus phase relations in the ternary systems CaO-RuO2-SiO2 and CaO-RuO2-V2O5 have been refined using thermodynamic data on calcium ruthenates, silicates and vanadates. Tie lines are established by considering Gibbs energy change for exchange reactions. Quaternary oxides have not been detected in these systems. Because of the relatively large entropy associated with phase transition of Ca2SiO4 from olivine to alpha' structure at 1120 K, reversal of one tie line is seen in the system CaO-RuO2-SiO2 between 950 and 1230 K. There is no change in sub-solidus phase relation as a function of temperature in the system CaO-RuO2-V2O5. Since vanadium can exist in several lower oxidation states, the computed sub-solidus phase relations are valid only at high oxygen partial pressures. There is fair agreement between the computed phase diagram and the limited experimental information available for CaO-deficient compositions in the literature. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Phase equilibrium experiments indicate that NdRhO3 is the only ternary oxide in the system Nd-Rh-O at 1273 K; it has orthorhombically-distorted perovskite structure. By employing a solid-state electrochemical cell incorporating calcia-stabilized zirconia as the electrolyte, thermodynamic properties of NdRhO3 are determined. The standard Gibbs energy of formation of NdRhO3 from its component binary oxides in the temperature ranges from 900 to 1300 K can be expressed as: 1/2Rh(2)O(3) (ortho)+1/2Nd(2)O(3)(hex)=NdRhO3(ortho), Delta(f(o,x))G(0)/J mol(-1)( +/- 197) = - 66256+5.64 (T/K). The decomposition temperature of NdRhO3 computed from extrapolated thermodynamic data is 1803 (+/- 4) K in pure oxygen and 1692 (+/- 4) K in air at standard pressure. Oxygen partial pressure-composition diagram and three-dimensional chemical potential diagram at 1273 K are developed from thermodynamic data obtained in this study and auxiliary information from the literature. Equilibrium temperature-composition phase diagrams at constant oxygen partial pressures are also constructed. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Programming environments for smartphones expose a concurrency model that combines multi-threading and asynchronous event-based dispatch. While this enables the development of efficient and feature-rich applications, unforeseen thread interleavings coupled with non-deterministic reorderings of asynchronous tasks can lead to subtle concurrency errors in the applications. In this paper, we formalize the concurrency semantics of the Android programming model. We further define the happens-before relation for Android applications, and develop a dynamic race detection technique based on this relation. Our relation generalizes the so far independently studied happens-before relations for multi-threaded programs and single-threaded event-driven programs. Additionally, our race detection technique uses a model of the Android runtime environment to reduce false positives. We have implemented a tool called DROIDRACER. It generates execution traces by systematically testing Android applications and detects data races by computing the happens-before relation on the traces. We analyzed 1 5 Android applications including popular applications such as Facebook, Twitter and K-9 Mail. Our results indicate that data races are prevalent in Android applications, and that DROIDRACER is an effective tool to identify data races.