4 resultados para Drains.
em Indian Institute of Science - Bangalore - Índia
Critical Evaluation of Determining Swelling Pressure by Swell-Load Method and Constant Volume Method
Resumo:
For any construction activity in expansive soils, determination of swelling pressure/heave is an essential step. Though many attempts have been made to develop laboratory procedures by using the laboratory one-dimensional oedometer to determine swelling pressure of expansive soils, they are reported to yield varying results. The main reason for these variations could be heterogeneous moisture distribution of the sample over its thickness. To overcome this variation the experimental procedure should be such that the soil gets fully saturated. Attempts were made to introduce vertical sand drains in addition to the top and bottom drains. In this study five and nine vertical sand drains were introduced to experimentally find out the variations in the swell and swelling pressure. The variations in the moisture content at middle, top, and bottom of the sample in the oedometer test are also reported. It is found that swell-load method is better as compared to zero-swell method. Further, five number of vertical sand drains are found to be sufficient to obtain uniform moisture content distribution.
Resumo:
Due to increasing trend of intensive rice cultivation in a coastal river basin, crop planning and groundwater management are imperative for the sustainable agriculture. For effective management, two models have been developed viz. groundwater balance model and optimum cropping and groundwater management model to determine optimum cropping pattern and groundwater allocation from private and government tubewells according to different soil types (saline and non-saline), type of agriculture (rainfed and irrigated) and seasons (monsoon and winter). A groundwater balance model has been developed considering mass balance approach. The components of the groundwater balance considered are recharge from rainfall, irrigated rice and non-rice fields, base flow from rivers and seepage flow from surface drains. In the second phase, a linear programming optimization model is developed for optimal cropping and groundwater management for maximizing the economic returns. The models developed were applied to a portion of coastal river basin in Orissa State, India and optimal cropping pattern for various scenarios of river flow and groundwater availability was obtained.
Resumo:
Most of the cities in India are undergoing rapid development in recent decades, and many rural localities are undergoing transformation to urban hotspots. These developments have associated land use/land cover (LULC) change that effects runoff response from catchments, which is often evident in the form of increase in runoff peaks, volume and velocity in drain network. Often most of the existing storm water drains are in dilapidated stage owing to improper maintenance or inadequate design. The drains are conventionally designed using procedures that are based on some anticipated future conditions. Further, values of parameters/variables associated with design of the network are traditionally considered to be deterministic. However, in reality, the parameters/variables have uncertainty due to natural and/or inherent randomness. There is a need to consider the uncertainties for designing a storm water drain network that can effectively convey the discharge. The present study evaluates performance of an existing storm water drain network in Bangalore, India, through reliability analysis by Advance First Order Second Moment (AFOSM) method. In the reliability analysis, parameters that are considered to be random variables are roughness coefficient, slope and conduit dimensions. Performance of the existing network is evaluated considering three failure modes. The first failure mode occurs when runoff exceeds capacity of the storm water drain network, while the second failure mode occurs when the actual flow velocity in the storm water drain network exceeds the maximum allowable velocity for erosion control, whereas the third failure mode occurs when the minimum flow velocity is less than the minimum allowable velocity for deposition control. In the analysis, runoff generated from subcatchments of the study area and flow velocity in storm water drains are estimated using Storm Water Management Model (SWMM). Results from the study are presented and discussed. The reliability values are low under the three failure modes, indicating a need to redesign several of the conduits to improve their reliability. This study finds use in devising plans for expansion of the Bangalore storm water drain system. (C) 2015 The Authors. Published by Elsevier B.V.