6 resultados para Diversification Economies
em Indian Institute of Science - Bangalore - Índia
Resumo:
Given that peninsular India was part of the Gondwanan super continent, part of its current biota has Gondwanan origin. To determine the Gondwanan component of the peninsular Indian biota, a large number of species spanning diverse taxonomic groups need to be sampled from multiple, if not all, of the former Gondwanan fragments. Such a large scale phylogenetic approach will be time consuming and resource intensive. Here, we explore the utility of a limited sampling approach, wherein sampling is confined to one of the Gondwanan fragments (peninsular India), in identifying putative Gondwanan elements. To this end, samples of Scolopendrid centipedes from Western Ghats region of peninsular India were subjected to molecular phylogenetic and dating analyses. The resulting phylogenetic tree supported monophyly of the family Scolopendridae which was in turn split into two clades constituting tribes Otostigmini and Scolopendrini-Asanadini. Bayesian divergence date estimates suggested that the earliest diversifications within various genera were between 86 and 73 mya, indicating that these genera might have Gondwanan origin. In particular, at least four genera of Scolopendrid centipedes, Scolopendra, Cormocephalus, Rhysida and Digitipes, might have undergone diversification on the drifting peninsular India during the Late Cretaceous. These putative Gondwanan taxa can be subjected to more extensive sampling to confirm their Gondwanan origin. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Infection of the skin or throat by Streptococcus dysgalactiae subspecies equisimilis (SDSE) may result in a number of human diseases. To understand mechanisms that give rise to new genetic variants in this species, we used multi-locus sequence typing (MLST) to characterise relationships in the SDSE population from India, a country where streptococcal disease is endemic. The study revealed Indian SDSE isolates have sequence types (STs) predominantly different to those reported from other regions of the world. Emm-ST combinations in India are also largely unique. Split decomposition analysis, the presence of emm-types in unrelated clonal complexes, and analysis of phylogenetic trees based on concatenated sequences all reveal an extensive history of recombination within the population. The ratio of recombination to mutation (r/m) events (11:1) and per site r/m ratio (41:1) in this population is twice as high as reported for SDSE from non-endemic regions. Recombination involving the emm-gene is also more frequent than recombination involving housekeeping genes, consistent with diversification of M proteins offering selective advantages to the pathogen. Our data demonstrate that genetic recombination in endemic regions is more frequent than non-endemic regions, and gives rise to novel local SDSE variants, some of which may have increased fitness or pathogenic potential.
Resumo:
We sampled Palaearctic naked-toed geckos from across their range in India and used two mitochondrial and two nuclear genes to reconstruct relationships within a global phylogeny. Published sequences of Peninsular Indian Hemidactylus allow us to contrast these two groups in dating analyses - providing insights into the history of the Indian dry zone. Palaearctic naked-toed geckos first moved onto the Indian Plate in the Oligocene, with higher-level diversification probably linked to collision of the Indian and Eurasian plates, and subsequent dispersal into-India and diversification with increasing Miocene aridity. An independent gekkonid radiation with species in the dry zone, Hemidactylus diversified during the same period in Peninsular India. Our results demonstrate that dry zone taxa across India may date back to at least the Miocene, with a potential historical climatic barrier between the Indus and Peninsular Indian Divisions. `Cyrtopodion' aravallense is revealed to be a complex with seven genetically and environmentally divergent lineages that began diversifying in the late Miocene, congruent with increased aridity in north-western India. This discovery of cryptic diversity in the Indian dry zone represents the first terrestrial vertebrate radiation from north-western central India and highlights how little we understand of the regions' biodiversity, emphasizing the need for systematic geographic sampling and multiline evidence to reveal true patterns of diversity. The ancestor of `Cyrtopodion' aravallense came into the nascent Indian dry zone in the Miocene and has since diversified, potentially in the absence of any sympatric scansorial rupicolous geckos. Cyrtopodion scabrum represents a unique case of commensalism and shows phylogeographic structure in its presumed native range. The taxonomic implications of our study include a number of undescribed species, recognition of `Cyrtopodion' as a distinct lineage and the non-monophyly of Altiphylax.
Resumo:
The subgenus Geckoella, the only ground-dwelling radiation within Cyrtodactylus, closely overlaps in distribution with brookii group Hemidactylus in peninsular India and Sri Lanka. Both groups have Oligocene origins, the latter with over thrice as many described species. The striking difference in species richness led us to believe that Geckoella diversity is underestimated, and we sampled for Geckoella across peninsular India. A multi-locus phylogeny reveals Geckoella diversity is hugely underestimated, with at least seven undescribed species, doubling previously known richness. Strikingly, the new species correspond to cryptic lineages within described Indian species (complexes); a number of these endemic lineages from the hills of peninsular India outside the Western Ghats, highlighting the undocumented diversity of the Indian dry zone. The Geckoella phylogeny demonstrates deep splits between the Indian species and Sri Lankan G. triedrus, and between Indian dry and wet zone clades, dating back to the late Oligocene. Geckoella and brookii group Hemidactylus show contrasting diversification patterns. Geckoella shows signals of niche conservatism and appears to have retained its ancestral forest habitat. The late Miocene burst in speciation in Geckoella may be linked to the expansion of rain forests during the mid-Miocene climatic optimum and subsequent fragmentation with increasing late Miocene aridification. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
Aim Widespread, transcontinental vertebrate groups represent ideal systems for biogeographical studies, because they can shed light on a wide range of questions relating to species diversification across the geographical template. We combined extensive geographical and genetic sampling from across multiple biogeographical realms to examine the timing and location of diversification in Asian sun skinks, a clade characterized by problematic species boundaries and a particularly enigmatic evolutionary history. Location Indian subcontinent, the Philippines, Southeast Asia and Sundaland. Methods We sequenced one mitochondrial and nine nuclear genes for most species in the genus Eutropis, and estimated phylogenetic relationships and divergence times using coalescent methods. To investigate the location of diversification events, we also estimated ancestral geographical ranges using several methods. Finally, we explored patterns of genetic diversity within several poorly understood, but widely distributed species. Results Divergence-time estimates indicate that Eutropis began to diversify during the Eocene. Biogeographical reconstructions show that species diversification was associated with dispersal into three biogeographical realms: India, Sundaland and the Philippines. Main conclusions The results of this study clarify several questions related to the evolutionary history of Eutropis, and place them in the context of classic Southeast Asian biogeography. Our study represents one of the first to compile a heavily sampled multilocus dataset ranging across international boundaries in southern Asia that have historically prevented a unified understanding of biogeographical and evolutionary processes involving the Indian subcontinent, mainland southern Asia and the island archipelagos of Southeast Asia.