51 resultados para Disturbance amplitude
em Indian Institute of Science - Bangalore - Índia
Resumo:
Existence of a periodic progressive wave solution to the nonlinear boundary value problem for Rayleigh surface waves of finite amplitude is demonstrated using an extension of the method of strained coordinates. The solution, obtained as a second-order perturbation of the linearized monochromatic Rayleigh wave solution, contains harmonics of all orders of the fundamental frequency. It is shown that the higher harmonic content of the wave increases with amplitude, but the slope of the waveform remains finite so long as the amplitude is less than a critical value.
Resumo:
Current-potential relationships are derived for small-amplitude periodic inputs for linear electrochemical systems using a Fourier synthesis procedure. Specific results have been obtained for a triangular potential waveform for two simple model systems.
Resumo:
A technique for obtaining a uniformly valid solution to the problem of nonlinear propagation of surface acoustic waves excited by a monochromatic line source is presented. The method of solution is an extension of the method of strained coordinates wherein both the dependent and independent variables are expanded in perturbation series. A special transformation is proposed for the independent variables so as to make the expansions uniformly valid and also to satisfy all the boundary conditions. This perturbation procedure, carried out to the second order, yields a solution containing a second harmonic surface wave whose amplitude and phase exhibit an oscillatory variation along the direction of propagation. In addition, the solution also contains a second harmonic bulk wave of constant amplitude but varying phase propagating into the medium.
Resumo:
This is an experimental and theoretical Study of a laminar separation bubble and the associated linear stability mechanisms. Experiments were performed over a flat plate kept in a wind tunnel, with an imposed pressure gradient typical of an aerofoil that would involve a laminar separation bubble. The separation bubble was characterized by measurement of surface-pressure distribution and streamwise velocity using hot-wire anemometry. Single component hot-wire anemometry was also used for a detailed study of the transition dynamics. It was foundthat the so-called dead-air region in the front portion of the bubble corresponded to a region of small disturbance amplitudes, with the amplitude reaching a maximum value close to the reattachment point. An exponential growth rate of the disturbance was seen in the region upstream of the mean maximum height of the bubble, and this was indicative of a linear instability mechanism at work. An infinitesimal disturbance was impulsively introduced into the boundary layer upstream of separation location, and the wave packet was tracked (in an ensemble-averaged sense) while it was getting advected downstream. The disturbance was found to be convective in nature. Linear stability analyses (both the Orr-Sommerfeld and Rayleigh calculations) were performed for mean velocity profiles, starting from an attached adverse-pressure-gradient boundary layer all the way up to the front portion of the separation-bubble region (i.e. up to the end of the dead-air region in which linear evolution of the disturbance could be expected). The conclusion from the present work is that the primary instability mechanism in a separation bubble is inflectional in nature, and its origin can be traced back to upstream of the separation location. In other words, the inviscid inflectional instability of the separated shear layer should be logically seen as an extension of the instability of the upstream attached adverse-pressure-gradient boundary layer. This modifies the traditional view that pegs the origin of the instability in a separation bubble to the detached shear layer Outside the bubble, with its associated Kelvin-Helmholtz mechanism. We contendthat only when the separated shear layer has moved considerably away from the wall (and this happens near the maximum-height location of the mean bubble), a description by the Kelvin-Helmholtz instability paradigm, with its associated scaling principles, Could become relevant. We also propose a new scaling for the most amplified frequency for a wall-bounded shear layer in terms of the inflection-point height and the vorticity thickness and show it to be universal.
Resumo:
Existence of a periodic progressive wave solution to the nonlinear boundary value problem for Rayleigh surface waves of finite amplitude is demonstrated using an extension of the method of strained coordinates. The solution, obtained as a second-order perturbation of the linearized monochromatic Rayleigh wave solution, contains harmonics of all orders of the fundamental frequency. It is shown that the higher harmonic content of the wave increases with amplitude, but the slope of the waveform remains finite so long as the amplitude is less than a critical value.
Resumo:
Abstaract is not available.
Resumo:
A pair of semi-linear hyperbolic partial differential equations governing the slow variations in amplitude and phase of a quasi-monochromatic finite-amplitude Love-wave on an isotropic layered half-space is derived using the method of multiple-scales. The analysis of the exact solution of these equations for a signalling problem reveals that the amplitude of the wave remains constant along its characteristic and that the phase of the wave increases linearly behind the wave-front.
Resumo:
The nonlinear propagation characteristics of surface acoustic waves on an isotropic elastic solid have been studied in this paper. The solution of the harmonic boundary value problem for Rayleigh waves is obtained as a generalized Fourier series whose coefficients are proportional to the slowly varying amplitudes of the various harmonics. The infinite set of coupled equations for the amplitudes when solved exhibit an oscillatory slow variation signifying a continuous transfer of energy back and forth among the various harmonics. A conservation relation is derived among all the harmonic amplitudes.
Resumo:
This note presents the statistical analysis carried out on some of the available experimental results to predict the resonant frequency and maximum displacement amplitude of a machine foundation – soil system under vertical vibration as a function of the size and weight of the foundation and of the excitation level. A total of 442 experimental results of Fry, Novak, and Raman have been analysed using nonlinear regression analysis. The results obtained compared well with predictions obtained from the popular theoretical models, and the coefficient of correlation obtained from the analysis was satisfactory in most of the cases.
Resumo:
The neutron-antineutron transition amplitude caused by an effective six fermion interaction with strength λeff is calculated within the context of the MIT Bag Model. The transition mass δm is found to have the value λeff×3×10−4(GeV6).
Resumo:
We study the analyticity in cosθ of the exact quantum-mechanical electric-charge-magnetic-monopole scattering amplitude by ascribing meaning to its formally divergent partial-wave expansion as the boundary value of an analytic function. This permits us to find an integral representation for the amplitude which displays its analytic structure. On the physical sheet we find only a branch-point singularity in the forward direction, while on each of the infinitely many unphysical sheets we find a logarithmic branch-point singularity in the backward direction as well as the same forward structure.
Resumo:
The surface water waves are "modal" waves in which the "physical space" (t, x, y, z) is the product of a propagation space (t, x, y) and a cross space, the z-axis in the vertical direction. We have derived a new set of equations for the long waves in shallow water in the propagation space. When the ratio of the amplitude of the disturbance to the depth of the water is small, these equations reduce to the equations derived by Whitham (1967) by the variational principle. Then we have derived a single equation in (t, x, y)-space which is a generalization of the fourth order Boussinesq equation for one-dimensional waves. In the neighbourhood of a wave froat, this equation reduces to the multidimensional generalization of the KdV equation derived by Shen & Keller (1973). We have also included a systematic discussion of the orders of the various non-dimensional parameters. This is followed by a presentation of a general theory of approximating a system of quasi-linear equations following one of the modes. When we apply this general method to the surface water wave equations in the propagation space, we get the Shen-Keller equation.
Resumo:
The ultrafast vibrational phase relaxation of O–H stretch in bulk water is investigated in molecular dynamics simulations. The dephasing time (T2) of the O–H stretch in bulk water calculated from the frequency fluctuation time correlation function (Cω(t)) is in the range of 70–80 femtosecond (fs), which is comparable to the characteristic timescale obtained from the vibrational echo peak shift measurements using infrared photon echo [W.P. de Boeij, M.S. Pshenichnikov, D.A. Wiersma, Ann. Rev. Phys. Chem. 49 (1998) 99]. The ultrafast decay of Cω(t) is found to be responsible for the ultrashort T2 in bulk water. Careful analysis reveals the following two interesting reasons for the ultrafast decay of Cω(t). (A) The large amplitude angular jumps of water molecules (within 30–40 fs time duration) provide a large scale contribution to the mean square vibrational frequency fluctuation and gives rise to the rapid spectral diffusion on 100 fs time scale. (B) The projected force, due to all the atoms of the solvent molecules on the oxygen (FO(t)) and hydrogen (FH(t)) atom of the O–H bond exhibit a large negative cross-correlation (NCC). We further find that this NCC is partly responsible for a weak, non-Arrhenius temperature dependence of the dephasing rate.
Resumo:
The matched filter method for detecting a periodic structure on a surface hidden behind randomness is known to detect up to (r(0)/Lambda) gt;= 0.11, where r(0) is the coherence length of light on scattering from the rough part and 3 is the wavelength of the periodic part of the surface-the above limit being much lower than what is allowed by conventional detection methods. The primary goal of this technique is the detection and characterization of the periodic structure hidden behind randomness without the use of any complicated experimental or computational procedures. This paper examines this detection procedure for various values of the amplitude a of the periodic part beginning from a = 0 to small finite values of a. We thus address the importance of the following quantities: `(a)lambda) `, which scales the amplitude of the periodic part with the wavelength of light, and (r(0))Lambda),in determining the detectability of the intensity peaks.