99 resultados para Distributed operating systems (Computers)

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present a decentralized dynamic load scheduling/balancing algorithm called ELISA (Estimated Load Information Scheduling Algorithm) for general purpose distributed computing systems. ELISA uses estimated state information based upon periodic exchange of exact state information between neighbouring nodes to perform load scheduling. The primary objective of the algorithm is to cut down on the communication and load transfer overheads by minimizing the frequency of status exchange and by restricting the load transfer and status exchange within the buddy set of a processor. It is shown that the resulting algorithm performs almost as well as a perfect information algorithm and is superior to other load balancing schemes based on the random sharing and Ni-Hwang algorithms. A sensitivity analysis to study the effect of various design parameters on the effectiveness of load balancing is also carried out. Finally, the algorithm's performance is tested on large dimensional hypercubes in the presence of time-varying load arrival process and is shown to perform well in comparison to other algorithms. This makes ELISA a viable and implementable load balancing algorithm for use in general purpose distributed computing systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is aimed at reviewing the notion of Byzantine-resilient distributed computing systems, the relevant protocols and their possible applications as reported in the literature. The three agreement problems, namely, the consensus problem, the interactive consistency problem, and the generals problem have been discussed. Various agreement protocols for the Byzantine generals problem have been summarized in terms of their performance and level of fault-tolerance. The three classes of Byzantine agreement protocols discussed are the deterministic, randomized, and approximate agreement protocols. Finally, application of the Byzantine agreement protocols to clock synchronization is highlighted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Control systems arising in many engineering fields are often of distributed parameter type, which are modeled by partial differential equations. Decades of research have lead to a great deal of literature on distributed parameter systems scattered in a wide spectrum.Extensions of popular finite-dimensional techniques to infinite-dimensional systems as well as innovative infinite-dimensional specific control design approaches have been proposed. A comprehensive account of all the developments would probably require several volumes and is perhaps a very difficult task. In this paper, however, an attempt has been made to give a brief yet reasonably representative account of many of these developments in a chronological order. To make it accessible to a wide audience, mathematical descriptions have been completely avoided with the assumption that an interested reader can always find the mathematical details in the relevant references.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stimulation technique has gained much importance in the performance studies of Concurrency Control (CC) algorithms for distributed database systems. However, details regarding the simulation methodology and implementation are seldom mentioned in the literature. One objective of this paper is to elaborate the simulation methodology using SIMULA. Detailed studies have been carried out on a centralised CC algorithm and its modified version. The results compare well with a previously reported study on these algorithms. Here, additional results concerning the update intensiveness of transactions and the degree of conflict are obtained. The degree of conflict is quantitatively measured and it is seen to be a useful performance index. Regression analysis has been carried out on the results, and an optimisation study using the regression model has been performed to minimise the response time. Such a study may prove useful for the design of distributed database systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Input-output stability of linear-distributed parameter systems of arbitrary order and type in the presence of a distributed controller is analyzed by extending the concept of dissipativeness, with certain modifications, to such systems. The approach is applicable to systems with homogeneous or homogenizable boundary conditions. It also helps in generating a Liapunov functional to assess asymptotic stability of the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we solve the distributed parameter fixed point smoothing problem by formulating it as an extended linear filtering problem and show that these results coincide with those obtained in the literature using the forward innovations method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The scope of application of Laplace transforms presently limited to the study of linear partial differential equations, is extended to the nonlinear domain by this study. This has been achieved by modifying the definition of D transforms, put forth recently for the study of classes of nonlinear lumped parameter systems. The appropriate properties of the new D transforms are presented to bring out their applicability in the analysis of nonlinear distributed parameter systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Equivalence of certain classes of second-order non-linear distributed parameter systems and corresponding linear third-order systems is established through a differential transformation technique. As linear systems are amenable to analysis through existing techniques, this study is expected to offer a method of tackling certain classes of non-linear problems which may otherwise prove to be formidable in nature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An important issue in the design of a distributed computing system (DCS) is the development of a suitable protocol. This paper presents an effort to systematize the protocol design procedure for a DCS. Protocol design and development can be divided into six phases: specification of the DCS, specification of protocol requirements, protocol design, specification and validation of the designed protocol, performance evaluation, and hardware/software implementation. This paper describes techniques for the second and third phases, while the first phase has been considered by the authors in their earlier work. Matrix and set theoretic based approaches are used for specification of a DCS and for specification of the protocol requirements. These two formal specification techniques form the basis of the development of a simple and straightforward procedure for the design of the protocol. The applicability of the above design procedure has been illustrated by considering an example of a computing system encountered on board a spacecraft. A Petri-net based approach has been adopted to model the protocol. The methodology developed in this paper can be used in other DCS applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new computational tool is presented in this paper for suboptimal control design of a class of nonlinear distributed parameter systems. First proper orthogonal decomposition based problem-oriented basis functions are designed, which are then used in a Galerkin projection to come up with a low-order lumped parameter approximation. Next, a suboptimal controller is designed using the emerging /spl thetas/-D technique for lumped parameter systems. This time domain sub-optimal control solution is then mapped back to the distributed domain using the same basis functions, which essentially leads to a closed form solution for the controller in a state feedback form. Numerical results for a real-life nonlinear temperature control problem indicate that the proposed method holds promise as a good suboptimal control design technique for distributed parameter systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Combining the principles of dynamic inversion and optimization theory, a new approach is presented for stable control of a class of one-dimensional nonlinear distributed parameter systems, assuming the availability a continuous actuator in the spatial domain. Unlike the existing approximate-then-design and design-then-approximate techniques, here there is no need of any approximation either of the system dynamics or of the resulting controller. Rather, the control synthesis approach is fairly straight-forward and simple. The controller formulation has more elegance because we can prove the convergence of the controller to its steady state value. To demonstrate the potential of the proposed technique, a real-life temperature control problem for a heat transfer application is solved. It has been demonstrated that a desired temperature profile can be achieved starting from any arbitrary initial temperature profile.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concurrency control (CC) algorithms are important in distributed database systems to ensure consistency of the database. A number of such algorithms are available in the literature. The issue of performance evaluation of these algorithms has been recognized to be important. However, only a few studies have been carried out towards this. This paper deals with the performance evaluation of a CC algorithm proposed by Rosenkrantz et al. through a detailed simulation study. In doing so, the algorithm has been modified so that it can, within itself, take care of the redundancy in the database. The influences of various system parameters and the transaction profile on the response time and on the degree of conflict are considered. The entire study has been carried out using the programming language SIMULA on a DEC-1090 system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distributed computing systems can be modeled adequately by Petri nets. The computation of invariants of Petri nets becomes necessary for proving the properties of modeled systems. This paper presents a two-phase, bottom-up approach for invariant computation and analysis of Petri nets. In the first phase, a newly defined subnet, called the RP-subnet, with an invariant is chosen. In the second phase, the selected RP-subnet is analyzed. Our methodology is illustrated with two examples viz., the dining philosophers' problem and the connection-disconnection phase of a transport protocol. We believe that this new method, which is computationally no worse than the existing techniques, would simplify the analysis of many practical distributed systems.