8 resultados para Disease Transmission, Professional-to-Patient

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Streptococcus pyogenes [group A streptococcus (GAS)], a human pathogen, and Streptococcus dysgalactiae subsp. equisimilis [human group G and C streptococcus (GGS/GCS)] are evolutionarily related, share the same tissue niche in humans, exchange genetic material, share up to half of their virulence-associated genes and cause a similar spectrum of diseases. Yet, GGS/GCS is often considered as a commensal bacterium and its role in streptococcal disease burden is under-recognized. While reports of the recovery of GGS/GCS from normally sterile sites are increasing, studies describing GGS/GCS throat colonization rates relative to GAS in the same population are very few. This study was carried out in India where the burden of streptococcal diseases, including rheumatic fever and rheumatic heart disease, is high. As part of a surveillance study, throat swabs were taken from 1504 children attending 7 municipal schools in Mumbai, India, during 2006-2008. GAS and GGS/GCS were identified on the basis of beta-haemolytic activity, carbohydrate group and PYR test, and were subsequently typed. The GGS/GCS carriage rate (1166/1504, 11%) was eightfold higher than the GAS carriage (22/1504, 1.5%) rate in this population. The 166 GGS/GCS isolates collected represented 21 different emm types (molecular types), and the 22 GAS isolates represented 15 different emm types. Although the rate of pharyngitis associated with GGS/GCS is marginally lower than with GAS, high rates of throat colonization by GGS/GCS underscore its importance in the pathogenesis of pharyngitis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human Leukocyte Antigen (HLA) plays an important role, in presenting foreign pathogens to our immune system, there by eliciting early immune responses. HLA genes are highly polymorphic, giving rise to diverse antigen presentation capability. An important factor contributing to enormous variations in individual responses to diseases is differences in their HLA profiles. The heterogeneity in allele specific disease responses decides the overall disease epidemiological outcome. Here we propose an agent based computational framework, capable of incorporating allele specific information, to analyze disease epidemiology. This framework assumes a SIR model to estimate average disease transmission and recovery rate. Using epitope prediction tool, it performs sequence based epitope detection for a given the pathogenic genome and derives an allele specific disease susceptibility index depending on the epitope detection efficiency. The allele specific disease transmission rate, that follows, is then fed to the agent based epidemiology model, to analyze the disease outcome. The methodology presented here has a potential use in understanding how a disease spreads and effective measures to control the disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ecoepidemiology is a well-developed branch of theoretical ecology, which explores interplay between the trophic interactions and the disease spread. In most ecoepidemiological models, however, the authors assume the predator to be a specialist, which consumes only a single prey species. In few existing papers, in which the predator was suggested to be a generalist, the alternative food supply was always considered to be constant. This is obviously a simplification of reality, since predators can often choose between a number of different prey. Consumption of these alternative prey can dramatically change their densities and strongly influence the model predictions. In this paper, we try to bridge the gap and explore a generic ecoepidemiological system with a generalist predator, where the densities of all prey are dynamical variables. The model consists of two prey species, one of which is subject to an infectious disease, and a predator, which consumes both prey species. We investigate two main scenarios of infection transmission mode: (i) the disease transmission rate is predator independent and (ii) the transmission rate is a function of predator density. For both scenarios we fulfil an extensive bifurcation analysis. We show that including a second dynamical prey in the system can drastically change the dynamics of the single prey case. In particular, the presence of a second prey impedes disease spread by decreasing the basic reproduction number and can result in a substantial drop of the disease prevalence. We demonstrate that with efficient consumption of the second prey species by the predator, the predator-dependent disease transmission can not destabilize interactions, as in the case with a specialist predator. Interestingly, even if the population of the second prey eventually vanishes and only one prey species finally remains, the system with two prey species may exhibit different properties to those of the single prey system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Overexpression of the epidermal growth factor receptor family genes, which include ErbB-1, 2, 3 and 4, has been implicated in a number of cancers. We have studied the extent of ErbB-2 overexpression among Indian women with sporadic breast cancer. Methods: Immmunohistochemistry and genomic polymerase chain reaction (PCR) were used to study the ErbB2 overexpression. ErbB2 status was correlated with other clinico-pathological parameters, including patient survival. Results: ErbB-2 overexpression was detected in 43.2% (159/368) of the cases by immunohistochemistry. For a sub-set of patients (n = 55) for whom total DNA was available, ErbB-2 gene amplification was detected in 25.5% (14/55) of the cases by genomic PCR. While the ErbB2 overexpression was significantly higher in patients with lymphnode (χ2 = 12.06, P≤ 0.001), larger tumor size (χ2 = 8.22, P = 0.042) and ductal carcinoma (χ2 = 15.42, P ≤ 0.001), it was lower in patients with disease-free survival (χ2 = 22.13, P ≤ 0.001). Survival analysis on a sub-set of patients for whom survival data were available (n = 179) revealed that ErbB-2 status (χ2 =25.94, P ≤ 0.001), lymphnode status (χ2 = 12.68, P ≤ 0.001), distant metastasis (χ2 = 19.49, P ≤ 0.001) and stage of the disease (χ2 = 28.04, P ≤0.001) were markers of poor prognosis. Conclusions: ErbB-2 overexpression was significantly greater compared with the Western literature, but comparable to other Indian studies. Significant correlation was found between ErbB-2 status and lymphnode status, tumor size and ductal carcinoma. ErbB-2 status, lymph node status, distant metastasis and stage of the disease were found to be prognostic indicators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Power system disturbances are often caused by faults on transmission lines. When faults occur in a power system, the protective relays detect the fault and initiate tripping of appropriate circuit breakers, which isolate the affected part from the rest of the power system. Generally Extra High Voltage (EHV) transmission substations in power systems are connected with multiple transmission lines to neighboring substations. In some cases mal-operation of relays can happen under varying operating conditions, because of inappropriate coordination of relay settings. Due to these actions the power system margins for contingencies are decreasing. Hence, power system protective relaying reliability becomes increasingly important. In this paper an approach is presented using Support Vector Machine (SVM) as an intelligent tool for identifying the faulted line that is emanating from a substation and finding the distance from the substation. Results on 24-bus equivalent EHV system, part of Indian southern grid, are presented for illustration purpose. This approach is particularly important to avoid mal-operation of relays following a disturbance in the neighboring line connected to the same substation and assuring secure operation of the power systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A common and practical paradigm in cooperative communication systems is the use of a dynamically selected `best' relay to decode and forward information from a source to a destination. Such systems use two phases - a relay selection phase, in which the system uses transmission time and energy to select the best relay, and a data transmission phase, in which it uses the spatial diversity benefits of selection to transmit data. In this paper, we derive closed-form expressions for the overall throughput and energy consumption, and study the time and energy trade-off between the selection and data transmission phases. To this end, we analyze a baseline non-adaptive system and several adaptive systems that adapt the selection phase, relay transmission power, or transmission time. Our results show that while selection yields significant benefits, the selection phase's time and energy overhead can be significant. In fact, at the optimal point, the selection can be far from perfect, and depends on the number of relays and the mode of adaptation. The results also provide guidelines about the optimal system operating point for different modes of adaptation. The analysis also sheds new insights on the fast splitting-based algorithm considered in this paper for relay selection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Radio Frequency (RF) based digital data transmission scheme with 8 channel encoder/decoder ICs is proposed for surface electrode switching of a 16-electrode wireless Electrical Impedance Tomography (EIT) system. A RF based wireless digital data transmission module (WDDTM) is developed and the electrode switching of a EIT system is studied by analyzing the boundary data collected and the resistivity images of practical phantoms. An analog multiplexers based electrode switching module (ESM) is developed with analog multiplexers and switched with parallel digital data transmitted by a wireless transmitter/receiver (T-x/R-x) module working with radio frequency technology. Parallel digital bits are generated using NI USB 6251 card working in LabVIEW platform and sent to transmission module to transmit the digital data to the receiver end. The transmitter/receiver module developed is properly interfaced with the personal computer (PC) and practical phantoms through the ESM and USB based DAQ system respectively. It is observed that the digital bits required for multiplexer operation are sequentially generated by the digital output (D/O) ports of the DAQ card. Parallel to serial and serial to parallel conversion of digital data are suitably done by encoder and decoder ICs. Wireless digital data transmission module successfully transmitted and received the parallel data required for switching the current and voltage electrodes wirelessly. 1 mA, 50 kHz sinusoidal constant current is injected at the phantom boundary using common ground current injection protocol and the boundary potentials developed at the voltage electrodes are measured. Resistivity images of the practical phantoms are reconstructed from boundary data using EIDORS. Boundary data and the resistivity images reconstructed from the surface potentials are studied to assess the wireless digital data transmission system. Boundary data profiles of the practical phantom with different configurations show that the multiplexers are operating in the required sequence for common ground current injection protocol. The voltage peaks obtained at the proper positions in the boundary data profiles proved the sequential operation of multiplexers and successful wireless transmission of digital bits. Reconstructed images and their image parameters proved that the boundary data are successfully acquired by the DAQ system which in turn again indicates a sequential and proper operation of multiplexers as well as the successful wireless transmission of digital bits. Hence the developed RF based wireless digital data transmission module (WDDTM) is found suitable for transmitting digital bits required for electrode switching in wireless EIT data acquisition system. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ser/Thr and Tyr protein kinases orchestrate many signalling pathways and hence loss in this balance leads to many disease phenotypes. Due to their high abundance, diversity and importance, efforts have been made in the past to classify kinases and annotate their functions at both gross and fine levels. These kinases are conventionally classified into subfamilies based on the sequences of catalytic domains. Usually the domain architecture of a full-length kinase is consistent with the subfamily classification made based on the sequence of kinase domain. Important contributions of modular domains to the overall function of the kinase are well known. Recently occurrence of two kinds of outlier kinases-''Hybrid'' and ``Rogue'' has been reported. These show considerable deviations in their domain architectures from the typical domain architecture known for the classical kinase subfamilies. This article provides an overview of the different subfamilies of human kinases and the role of non-kinase domains in functions and diseases. Importantly this article provides analysis of hybrid and rogue kinases encoded in the human genome and highlights their conservation in closely related primate species. These kinases are examples of elegant rewiring to bring about subtle functional differences compared to canonical variants.