10 resultados para Diagnostic category
em Indian Institute of Science - Bangalore - Índia
Resumo:
Background: The members of cupin superfamily exhibit large variations in their sequences, functions, organization of domains, quaternary associations and the nature of bound metal ion, despite having a conserved beta-barrel structural scaffold. Here, an attempt has been made to understand structure-function relationships among the members of this diverse superfamily and identify the principles governing functional diversity. The cupin superfamily also contains proteins for which the structures are available through world-wide structural genomics initiatives but characterized as ``hypothetical''. We have explored the feasibility of obtaining clues to functions of such proteins by means of comparative analysis with cupins of known structure and function. Methodology/Principal Findings: A 3-D structure-based phylogenetic approach was undertaken. Interestingly, a dendrogram generated solely on the basis of structural dissimilarity measure at the level of domain folds was found to cluster functionally similar members. This clustering also reflects an independent evolution of the two domains in bicupins. Close examination of structural superposition of members across various functional clusters reveals structural variations in regions that not only form the active site pocket but are also involved in interaction with another domain in the same polypeptide or in the oligomer. Conclusions/Significance: Structure-based phylogeny of cupins can influence identification of functions of proteins of yet unknown function with cupin fold. This approach can be extended to other proteins with a common fold that show high evolutionary divergence. This approach is expected to have an influence on the function annotation in structural genomics initiatives.
Resumo:
The finite predictability of the coupled ocean-atmosphere system is determined by its aperiodic variability. To gain insight regarding the predictability of such a system, a series of diagnostic studies has been carried out to investigate the role of convergence feedback in producing the aperiodic behavior of the standard version of the Cane-Zebiak model. In this model, an increase in sea surface temperature (SST) increases atmospheric heating by enhancing local evaporation (SST anomaly feedback) and low-level convergence (convergence feedback). The convergence feedback is a nonlinear function of the background mean convergence field. For the set of standard parameters used in the model, it is shown that the convergence feedback contributes importantly to the aperiodic behaviour of the model. As the strength of the convergence feedback is increased from zero to its standard value, the model variability goes from a periodic regime to an aperiodic regime through a broadening of the frequency spectrum around the basic periodicity of about 4 years. Examination of the forcing associated with the convergence feedback reveals that it is intermittent, with relatively large amplitude only during 2 or 3 months in the early part of the calendar year. This seasonality in the efficiency of the convergence feedback is related to the strong seasonality of the mean convergence over the eastern Pacific. It is shown that if the mean convergence field is fixed at its March value, aperiodic behavior is produced even in the absence of annual cycles in the other mean fields. On the, other hand, if the mean convergence field is fixed at its September value, the coupled model evolution remains close to periodic, even in the presence of the annual cycle in the other fields. The role of convergence feedback on the aperiodic variability of the model for other parameter regimes is also examined. It is shown that a range exists in the strength of the SST anomaly feedback for which the model variability is aperiodic even without the convergence feedback. It appears that in the absence of convergence feedback, enhancement of the strength of the air-sea coupling in the model through other physical processes also results in aperiodicity in the model.
Resumo:
This paper presents an approach for identifying the faulted line section and fault location on transmission systems using support vector machines (SVMs) for diagnosis/post-fault analysis purpose. Power system disturbances are often caused by faults on transmission lines. When fault occurs on a transmission system, the protective relay detects the fault and initiates the tripping operation, which isolates the affected part from the rest of the power system. Based on the fault section identified, rapid and corrective restoration procedures can thus be taken to minimize the power interruption and limit the impact of outage on the system. The approach is particularly important for post-fault diagnosis of any mal-operation of relays following a disturbance in the neighboring line connected to the same substation. This may help in improving the fault monitoring/diagnosis process, thus assuring secure operation of the power systems. In this paper we compare SVMs with radial basis function neural networks (RBFNN) in data sets corresponding to different faults on a transmission system. Classification and regression accuracy is reported for both strategies. Studies on a practical 24-Bus equivalent EHV transmission system of the Indian Southern region is presented for indicating the improved generalization with the large margin classifiers in enhancing the efficacy of the chosen model.
Resumo:
A substantial number of medical students in India have to bear an enormous financial burden for earning a bachelor's degree in medicine referred to as MBBS (bachelor of medicine and bachelor of surgery). This degree program lasts for four and one-half years followed by one year of internship. A postgraduate degree, such as MD, has to be pursued separately on completion of a MBBS. Every medical college in India is part of a hospital where the medical students get clinical exposure during the course of their study. All or at least a number of medical colleges in a given state are affiliated to a university that mainly plays a role of an overseeing authority. The medical colleges usually have no official interaction with other disciplines of education such as science and engineering, perhaps because of their independent location and absence of emphasis on medical research. However, many of the medical colleges are adept in imparting high-quality and sound training in medical practices including diagnostics and treatment. The medical colleges in India are generally of two types, i.e., government owned and private. Since only a limited number of seats are available across India in the former category of colleges, only a small fraction of aspiring candidates can find admission in these colleges after performing competitively in the relevant entrance tests. A major advantage of studying in these colleges is the nominal tuition fees that have to be paid. On the other hand, a large majority of would-be medical graduates have to seek admission in the privately run medical institutes in which the tuition and other related fees can be mind boggling when compared to their public counterparts. Except for candidates of exceptionally affluent background, the only alternative for fulfilling the dream of becoming a doctor is by financing one's study through hefty bank loans that may take years to pay back. It is often heard from patients that they are asked by doctors to undergo a plethora of diagnostic tests for apparently minor illnesses, which may financially benefit those prescribing the tests. The present paper attempts to throw light on the extent of disparity in cost of a medical education between state-funded and privately managed medical colleges in India; the average salary of a new medical graduate, which is often ridiculously low when compared to what is offered in entry-level engineering and business jobs; and the possible repercussions of this apparently unjust economic situation regarding the exploitation of patients.
Resumo:
Lymphatic filariasis is the second leading cause of permanent long-term disability globally and control of this disease needs efficient diagnostic methods. In this study, abundantly expressing microfilarial sheath protein (Shp-1) from Brugia malayi was characterized as a filarial diagnostic candidate using samples from different clinical population. Monoclonal antibodies were developed against E. coil expressed recombinant Shp-1 in order to assess its efficiency in filarial antigen detection assay system. Endemic Normal (EN, n = 170), asymptomatic microfilaeremics (MF, n = 65), symptomatic chronic pathology (CP, n = 45) and non endemic normal (NEN, n = 10) sera were analyzed by antigen capture enzyme-linked immunosorbent assay. Of the 290 individuals, all MF individuals (both brugian and bancroftian) were positive in this assay followed by CP and EN. When compared with SXP-1 and Og4C3 antigen assays, all assays detected Wb MF correctly, Bm MF was detected by Shp-1 and SXP-1 assays, and only Shp-1 was able to detect EN (12%) and CP (29%). Results showed that this assay may be useful for monitoring prior to mass drug administration. (c) 2014 Elsevier Inc. All rights reserved.
Resumo:
In the domain of manual mechanical assembly, expert knowledge is an important means of supporting assembly planning that leads to fewer issues during actual assembly. Knowledge based systems can be used to provide assembly planners with expert knowledge as advice. However, acquisition of knowledge remains a difficult task to automate, while manual acquisition is tedious, time-consuming, and requires engagement of knowledge engineers with specialist knowledge to understand and translate expert knowledge. This paper describes the development, implementation and preliminary evaluation of a method that asks a series of questions to an expert, so as to automatically acquire necessary diagnostic and remedial knowledge as rules for use in a knowledge based system for advising assembly planners diagnose and resolve issues. The method, called a questioning procedure, organizes its questions around an assembly situation which it presents to the expert as the context, and adapts its questions based on the answers it receives from the expert. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Clinical microscopy is a versatile diagnostic platform used for diagnosis of a multitude of diseases. In the recent past, many microfluidics based point-of-care diagnostic devices have been developed, which serve as alternatives to microscopy. However, these point-of-care devices are not as multi-functional and versatile as clinical microscopy. With the use of custom designed optics and microfluidics, we have developed a versatile microscopy-based cellular diagnostic platform, which can be used at the point of care. The microscopy platform presented here is capable of detecting infections of very low parasitemia level (in a very small quantity of sample), without the use of any additional computational hardware. Such a cost-effective and portable diagnostic device, would greatly impact the quality of health care available to people living in rural locations of the world. Apart from clinical diagnostics, it's applicability to field research in environmental microbiology has also been outlined. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
Resumo:
Imaging flow cytometry is an emerging technology that combines the statistical power of flow cytometry with spatial and quantitative morphology of digital microscopy. It allows high-throughput imaging of cells with good spatial resolution, while they are in flow. This paper proposes a general framework for the processing/classification of cells imaged using imaging flow cytometer. Each cell is localized by finding an accurate cell contour. Then, features reflecting cell size, circularity and complexity are extracted for the classification using SVM. Unlike the conventional iterative, semi-automatic segmentation algorithms such as active contour, we propose a noniterative, fully automatic graph-based cell localization. In order to evaluate the performance of the proposed framework, we have successfully classified unstained label-free leukaemia cell-lines MOLT, K562 and HL60 from video streams captured using custom fabricated cost-effective microfluidics-based imaging flow cytometer. The proposed system is a significant development in the direction of building a cost-effective cell analysis platform that would facilitate affordable mass screening camps looking cellular morphology for disease diagnosis. Lay description In this article, we propose a novel framework for processing the raw data generated using microfluidics based imaging flow cytometers. Microfluidics microscopy or microfluidics based imaging flow cytometry (mIFC) is a recent microscopy paradigm, that combines the statistical power of flow cytometry with spatial and quantitative morphology of digital microscopy, which allows us imaging cells while they are in flow. In comparison to the conventional slide-based imaging systems, mIFC is a nascent technology enabling high throughput imaging of cells and is yet to take the form of a clinical diagnostic tool. The proposed framework process the raw data generated by the mIFC systems. The framework incorporates several steps: beginning from pre-processing of the raw video frames to enhance the contents of the cell, localising the cell by a novel, fully automatic, non-iterative graph based algorithm, extraction of different quantitative morphological parameters and subsequent classification of cells. In order to evaluate the performance of the proposed framework, we have successfully classified unstained label-free leukaemia cell-lines MOLT, K562 and HL60 from video streams captured using cost-effective microfluidics based imaging flow cytometer. The cell lines of HL60, K562 and MOLT were obtained from ATCC (American Type Culture Collection) and are separately cultured in the lab. Thus, each culture contains cells from its own category alone and thereby provides the ground truth. Each cell is localised by finding a closed cell contour by defining a directed, weighted graph from the Canny edge images of the cell such that the closed contour lies along the shortest weighted path surrounding the centroid of the cell from a starting point on a good curve segment to an immediate endpoint. Once the cell is localised, morphological features reflecting size, shape and complexity of the cells are extracted and used to develop a support vector machine based classification system. We could classify the cell-lines with good accuracy and the results were quite consistent across different cross validation experiments. We hope that imaging flow cytometers equipped with the proposed framework for image processing would enable cost-effective, automated and reliable disease screening in over-loaded facilities, which cannot afford to hire skilled personnel in large numbers. Such platforms would potentially facilitate screening camps in low income group countries; thereby transforming the current health care paradigms by enabling rapid, automated diagnosis for diseases like cancer.