8 resultados para Detergents

em Indian Institute of Science - Bangalore - Índia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Guanylyl cyclase C (GCC), a member of the family of membrane bound guanylyl cyclases is the receptor for the heat-stable enterotoxin (ST) peptides and the guanylin family of endogenous peptides. GCC is activated upon ligand binding to increase intracellular cGMP levels, which in turn activates other downstream signalling events in the cell. GCC is also activated in vitro by nonionic detergents. We have used the T84 cell line as a model system to investigate the regulation of GCC activity by ATP. Ligand-stimulated GCC activity is potentiated in the presence of ATP, whereas detergent-stimulated activity is inhibited. The potentiation of GCC activity by ATP is dependent on the presence of Mg2+ ions, and is probably brought about by a direct binding of Mg-ATP to GCC. The protein kinase-like domain of GCC, which has earlier been shown to play a critical role in the regulation of GCC activity, may be a possible site for the binding of Mg-ATP to GCC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microsomal b-type hemoprotein designated, cytochrome b555 of C-Roseus seedlings was solubilized using detergents and purified by a combination of ion exchange chromatography and gel filtration to a specific content of 18.5 nmol per mg of protein. The purified cytochrome b555 was homogeneous and estimated to have an apparent molecular weight of 16500 on SDS-PAGE. The absorption spectrum of the reduced form has major peaks at 424, 525 and 555 nm. The α-band of the reduced form is asymmetric with a pronounced shoulder at 559 nm. The spectrum of the pyridine ferrohemochrome shows absorption peaks at 557, 524 and 418 nm indicating that the cytochrome has protoheme prosthetic group. The purified cytochrome is autoxidizable and does not combine with carbon monoxide, azide or cyanide. It is reducible by NADH in the presence of NADH-cytochrome b555 reductase partially purified from C-Roseus microsomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

7-Alkoxy and 4-methyl-7-alkoxy coumarins show solvent-dependent fluorescence emission. The monomeric fluorescence emission of these alkoxy coumarins was exploited as a probe to measure the surface polarity of the micelles formed by ionic (sodium dodecylsulphate and cetyltrimethyl-ammonium bromide) and non-ionic (Triton X-100) detergents. By comparing the solvent-dependent fluorescence of these alkoxy coumarins in various homogeneous solvents, the polarity of the micelles was determined qualitatively. All three micelles are more polar than hydrocarbon solvents but are less polar than water.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The antihypercholesterolemic drug clofibrate (ethyl-α-p-chlorophenoxyisobutyrate) stimulated the latent ATPase activity and “superstimulated” the uncoupler-induced ATPase activity of rat-liver mitochondria. Addition of clofibrate decreased the turbidity of mitochondrial suspensions and released considerable amount of mitochondrial protein into solution. In these properties it closely resembled detergents like Triton X-100 and deoxycholate. However, unlike the detergents, clofibrate required the presence of a permeant cation for its disruptive action. Also, it was without any such effect on sonic submitochondrial particles. The drug enhanced the uptake of both Mg2 and Cl− by mitochondria suggesting that osmotic swelling precedes lysis. Sonic submitochondrial particles prepared in the presence of clofibrate showed a greater yield and comparable ATPase activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The presence of palmitoyl-CoA synthetase (EC 6.2.1.3) in the brush borderfree particulate fraction of chicken intestinal mucosa is demonstrated. The enzyme was dependent on the simultaneous presence of lysophosphatidylcholine and Triton X-100 as well as ATP, CoA and Mg2+ for maximal activity. Lysophosphatidylcholine could not be replaced by other lipids. Enzyme preparations solubilized by Triton X-100 or lysophosphatidylcholine were still dependent on the presence of detergents for maximal activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Receptor guanylyl cyclases are multidomain proteins, and ligand binding to the extracellular domain increases the levels of intracellular cGMP. The intracellular domain of these receptors is composed of a kinase homology domain (KHD), a linker of similar to 70 amino acids, followed by the C-terminal guanylyl cyclase domain. Mechanisms by which these receptors are allosterically regulated by ligand binding to the extracellular domain and ATP binding to the KHD are not completely understood. Here we examine the role of the linker region in receptor guanylyl cyclases by a series of point mutations in receptor guanylyl cyclase C. The linker region is predicted to adopt a coiled coil structure and aid in dimerization, but we find that the effects of mutations neither follow a pattern predicted for a coiled coil peptide nor abrogate dimerization. Importantly, this region is critical for repressing the guanylyl cyclase activity of the receptor in the absence of ligand and permitting ligand-mediated activation of the cyclase domain. Mutant receptors with high basal guanylyl cyclase activity show no further activation in the presence of non-ionic detergents, suggesting that hydrophobic interactions in the basal and inactive conformation of the guanylyl cyclase domain are disrupted by mutation. Equivalent mutations in the linker region of guanylyl cyclase A also elevated the basal activity and abolished ligand-and detergent-mediated activation. We, therefore, have defined a key regulatory role for the linker region of receptor guanylyl cyclases which serves as a transducer of information from the extracellular domain via the KHD to the catalytic domain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Guanylyl cyclase C (GCC) is the receptor for the family of guanylin peptides and bacterial heat-stable enterotoxins (ST). The receptor is composed of an extracellular, ligand-binding domain and an intracellular domain with a region of homology to protein kinases and a guanylyl cyclase catalytic domain. We have expressed the entire intracellular domain of GCC in insect cells and purified the recombinant protein, GCC-IDbac, to study its catalytic activity and regulation. Kinetic properties of the purified protein were similar to that of full-length GCC, and high activity was observed when MnGTP was used as the substrate. Nonionic detergents, which stimulate the guanylyl cyclase activity of membrane-associated GCC, did not appreciably increase the activity of GCC-IDbac, indicating that activation of the receptor by Lubrol involved conformational changes that required the transmembrane and/or the extracellular domain. The guanylyl cyclase activity of GCC-IDbac was inhibited by Zn2+, at concentrations shown to inhibit adenylyl cyclase, suggesting a structural homology between the two enzymes. Covalent crosslinking of GCC-IDbac indicated that the protein could associate as a dimer, but a large fraction was present as a trimer. Gel filtration analysis also showed that the major fraction of the protein eluted at a molecular size of a trimer, suggesting that the dimer detected by cross-linking represented subtle differences in the juxtaposition of the individual polypeptide chains. We therefore provide evidence that the trimeric state of GCC is catalytically active, and sequences required to generate the trimer are present in the intracellular domain of GCC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Groundnut Bud Necrosis Virus (GBNV) is a tripartite ambisense RNA plant virus that belongs to serogroup IV of Tospovirus genus. Non-Structural protein-m (NSm), which functions as movement protein in tospoviruses, is encoded by the M RNA. In this communication, we demonstrate that despite the absence of any putative transmembrane domain, GBNV NSm associates with membranes when expressed in E. coli as well as in N. benthamiana. Incubation of refolded NSm with liposomes ranging in size from 200-250 nm resulted in changes in the secondary and tertiary structure of NSm. A similar behaviour was observed in the presence of anionic and zwitterionic detergents. Furthermore, the morphology of the liposomes was found to be modified in the presence of NSm. Deletion of coiled coil domain resulted in the inability of in planta expressed NSm to interact with membranes. Further, when the C-terminal coiled coil domain alone was expressed, it was found to be associated with membrane. These results demonstrate that NSm associates with membranes via the C-terminal coiled coil domain and such an association may be important for movement of viral RNA from cell to cell.