11 resultados para Destinations

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the trade-off between delivery delay and energy consumption in a delay tolerant network in which a message (or a file) has to be delivered to each of several destinations by epidemic relaying. In addition to the destinations, there are several other nodes in the network that can assist in relaying the message. We first assume that, at every instant, all the nodes know the number of relays carrying the packet and the number of destinations that have received the packet. We formulate the problem as a controlled continuous time Markov chain and derive the optimal closed loop control (i.e., forwarding policy). However, in practice, the intermittent connectivity in the network implies that the nodes may not have the required perfect knowledge of the system state. To address this issue, we obtain an ODE (i.e., fluid) approximation for the optimally controlled Markov chain. This fluid approximation also yields an asymptotically optimal open loop policy. Finally, we evaluate the performance of the deterministic policy over finite networks. Numerical results show that this policy performs close to the optimal closed loop policy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the tradeoff between delivery delay and energy consumption in a delay-tolerant network in which a message (or a file) has to be delivered to each of several destinations by epidemic relaying. In addition to the destinations, there are several other nodes in the network that can assist in relaying the message. We first assume that, at every instant, all the nodes know the number of relays carrying the message and the number of destinations that have received the message. We formulate the problem as a controlled continuous-time Markov chain and derive the optimal closed-loop control (i.e., forwarding policy). However, in practice, the intermittent connectivity in the network implies that the nodes may not have the required perfect knowledge of the system state. To address this issue, we obtain an ordinary differential equation (ODE) (i.e., a deterministic fluid) approximation for the optimally controlled Markov chain. This fluid approximation also yields an asymptotically optimal open-loop policy. Finally, we evaluate the performance of the deterministic policy over finite networks. Numerical results show that this policy performs close to the optimal closed-loop policy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While performing a mission, multiple Unmanned Aerial Vehicles (UAVs) need to avoid each other to prevent collisions among them. In this paper, we design a collision avoidance algorithm to resolve the conflict among UAVs that are on a collision course while flying to heir respective destinations. The collision avoidance algorithm consist of each UAV that is on a collision course reactively executing a maneuver that will, as in `inverse' Proportional Navigation (PN), increase Line of Sight (LOS) rate between them, resulting in a `pulling out' of collision course. The algorithm is tested for high density traffic scenarios as well as for robustness in the presence of noise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In wireless ad hoc networks, nodes communicate with far off destinations using intermediate nodes as relays. Since wireless nodes are energy constrained, it may not be in the best interest of a node to always accept relay requests. On the other hand, if all nodes decide not to expend energy in relaying, then network throughput will drop dramatically. Both these extreme scenarios (complete cooperation and complete noncooperation) are inimical to the interests of a user. In this paper, we address the issue of user cooperation in ad hoc networks. We assume that nodes are rational, i.e., their actions are strictly determined by self interest, and that each node is associated with a minimum lifetime constraint. Given these lifetime constraints and the assumption of rational behavior, we are able to determine the optimal share of service that each node should receive. We define this to be the rational Pareto optimal operating point. We then propose a distributed and scalable acceptance algorithm called Generous TIT-FOR-TAT (GTFT). The acceptance algorithm is used by the nodes to decide whether to accept or reject a relay request. We show that GTFT results in a Nash equilibrium and prove that the system converges to the rational and optimal operating point.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many next-generation distributed applications, such as grid computing, require a single source to communicate with a group of destinations. Traditionally, such applications are implemented using multicast communication. A typical multicast session requires creating the shortest-path tree to a fixed number of destinations. The fundamental issue in multicasting data to a fixed set of destinations is receiver blocking. If one of the destinations is not reachable, the entire multicast request (say, grid task request) may fail. Manycasting is a generalized variation of multicasting that provides the freedom to choose the best subset of destinations from a larger set of candidate destinations. We propose an impairment-aware algorithm to provide manycasting service in the optical layer, specifically OBS. We compare the performance of our proposed manycasting algorithm with traditional multicasting and multicast with over provisioning. Our results show a significant improvement in the blocking probability by implementing optical-layer manycasting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The concept of interference alignment when extended to three-source three-destination instantaneous multiple unicast network for the case where, each source-destination pair has a min-cut of 1 and zero-interference conditions are not satisfied, is known to achieve a rate of half for every source-destination pair under certain conditions [6]. This was called network alignment. We generalize this concept of network alignment to three-source three-destination multiple unicast (3S-3D-MU) networks with delays, without making use of memory at the intermediate nodes (i.e., nodes other than the sources and destinations) and using time varying Local Encoding Kernels (LEKs). This achieves half the rate corresponding to the individual source-destination min-cut for some classes of 3S-3D-MU network with delays which do not satisfy the zero-interference conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mobile P2P technology provides a scalable approach for content delivery to a large number of users on their mobile devices. In this work, we study the dissemination of a single item of content (e. g., an item of news, a song or a video clip) among a population of mobile nodes. Each node in the population is either a destination (interested in the content) or a potential relay (not yet interested in the content). There is an interest evolution process by which nodes not yet interested in the content (i.e., relays) can become interested (i.e., become destinations) on learning about the popularity of the content (i.e., the number of already interested nodes). In our work, the interest in the content evolves under the linear threshold model. The content is copied between nodes when they make random contact. For this we employ a controlled epidemic spread model. We model the joint evolution of the copying process and the interest evolution process, and derive joint fluid limit ordinary differential equations. We then study the selection of parameters under the content provider's control, for the optimization of various objective functions that aim at maximizing content popularity and efficient content delivery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a scenario where the communication nodes in a sensor network have limited energy, and the objective is to maximize the aggregate bits transported from sources to respective destinations before network partition due to node deaths. This performance metric is novel, and captures the useful information that a network can provide over its lifetime. The optimization problem that results from our approach is nonlinear; however, we show that it can be converted to a Multicommodity Flow (MCF) problem that yields the optimal value of the metric. Subsequently, we compare the performance of a practical routing strategy, based on Node Disjoint Paths (NDPs), with the ideal corresponding to the MCF formulation. Our results indicate that the performance of NDP-based routing is within 7.5% of the optimal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a Cooperative Opportunistic Automatic Repeat ReQuest (CoARQ) scheme to solve the HOL-blocking problem in infrastructure IEEE 802.11 WLANs. HOL blocking occurs when the head-of-the-line packet at the Access Point (AP) queue blocks the transmission of packets to other destinations resulting in severe throughput degradation. When the AP transmits a packet to a mobile station (STA), some of the nodes in the vicinity can overhear this packet transmission successfully. If the original transmission by the AP is unsuccessful, our CoARQ scheme chooses the station. STA or AP) with the best channel to the intended receiver as a relay and the chosen relay forwards the AP's packet to the receiver. This way, our scheme removes the bottleneck at the AP, thereby providing significant improvements in the throughput of the AP. We analyse the performance of our scheme in an infrastructure WLAN under a TCP controlled file download scenario and our analytical results are further validated by extensive simulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a setting in which a single item of content is disseminated in a population of mobile nodes by opportunistic copying when pairs of nodes come in radio contact. The nodes in the population may either be interested in receiving the content (referred to as destinations) or not yet interested in receiving the content (referred to as relays). We consider a model for the evolution of popularity, the process by which relays get converted into destinations. A key contribution of our work is to model and study the joint evolution of content popularity and its spread in the population. Copying the content to relay nodes is beneficial since they can help spread the content to destinations, and could themselves be converted into destinations. We derive a fluid limit for the joint evolution model and obtain optimal policies for copying to relay nodes in order to deliver content to a desired fraction of destinations, while limiting the fraction of relay nodes that get the content but never turn into destinations. We prove that a time-threshold policy is optimal for controlling the copying to relays, i.e., there is an optimal time-threshold up to which all opportunities for copying to relays are exploited, and after which relays are not copied to. We then utilize simulations and numerical evaluations to provide insights into the effects of various system parameters on the optimally controlled co-evolution model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Charge-transfer (CT) excitations are essential for photovoltaic phenomena in organic solar cells. Owing to the complexity of molecular geometries and orbital coupling, a detailed analysis and spatial visualisation of CT processes can be challenging. In this paper, a new detail-oriented visualisation scheme, the particle-hole map (PHM), is applied and explained for the purpose of spatial analysis of excitations in organic molecules. The PHM can be obtained from the output of a time-dependent density-functional theory calculation with negligible additional computational cost, and provides a useful physical picture for understanding the origins and destinations of electrons and holes during an excitation process. As an example, we consider intramolecular CT excitations in Diketopyrrolopyrrole-based molecules, and relate our findings to experimental results.